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Foreword

The ACS Symposium Series was first published in 1974 to provide a
mechanism for publishing symposia quickly in book form. The purpose of
the series is to publish timely, comprehensive books developed from the ACS
sponsored symposia based on current scientific research. Occasionally, books are
developed from symposia sponsored by other organizations when the topic is of
keen interest to the chemistry audience.

Before agreeing to publish a book, the proposed table of contents is reviewed
for appropriate and comprehensive coverage and for interest to the audience. Some
papers may be excluded to better focus the book; others may be added to provide
comprehensiveness. When appropriate, overview or introductory chapters are
added. Drafts of chapters are peer-reviewed prior to final acceptance or rejection,
and manuscripts are prepared in camera-ready format.

As a rule, only original research papers and original review papers are
included in the volumes. Verbatim reproductions of previous published papers
are not accepted.

ACS Books Department

D
ow

nl
oa

de
d 

by
 8

9.
16

3.
35

.4
2 

on
 M

ay
 2

7,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

fw
00

1

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



Preface

The chapters in this monograph are contributions from the Advances in
Quantum Monte Carlo symposium held at Pacifichem 2010, International
Chemical Congress of Pacific Basin Societies. The symposium was dedicated to
celebrate the career of James B. Anderson, a notable researcher in the field.

Quantum Monte Carlo provides an ab initio solution to the Schroedinger
equation by performing a random walk through configuration space in imaginary
time. Benchmark calculations suggest that its most commonly-used variant,
“fixed-node” diffusion Monte Carlo, estimates energies with an accuracy
comparable to that of high-level coupled-cluster calculations. These two methods,
each having advantages and disadvantages, are complementary “gold-standards”
of quantum chemistry.

There are challenges facing researchers in the field, several of which are
addressed in the chapters in this monograph. These include improving the
accuracy and precision of quantum Monte Carlo calculations; understanding
the exchange nodes and utilizing the simulated electron distribution; extending
the method to large and/or experimentally-challenging systems; and developing
hybrid molecular mechanics/dynamics and Monte Carlo algorithms.

We extend special thanks to the Physical Chemistry Division of the American
Chemical Society and Silicon Graphics, Inc. that sponsored the symposium
and provided partial financial support to offset travel expenses of some of its
participants.

Shigenori Tanaka
Kobe, Hyogo, Japan

Stuart M. Rothstein
St. Catharines, Ontario, Canada

William A. Lester, Jr.
Berkeley, California, United States
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Chapter 1

Correlated Sampling for Energy Differences in
Diffusion Quantum Monte Carlo

James B. Anderson*

Department of Chemistry, Pennsylvania State University,
University Park, Pennsylvania 16802

*E-mail: jba@psu.edu

We describe a method using correlated sampling in fixed-node
diffusionQMC calculations to determine differences in energies
for similar molecular systems. The method is based on an
earlier scheme for calculating corrections to trial wave functions
applied to two or more systems with correlated calculations in
fixed-node QMC. The result is a significant reduction in the
statistical error in comparing the energies of similar molecular
structures.

Introduction

The statistical error inherent in Quantum Monte Carlo calculations leads to
difficulties in calculating differences in energies for similar systems. Analytic
variational calculations, for example, are free of this problem. In variationalQMC
the statistical error in energy differences may be reduced with use of correlated
sampling, but correlated sampling in diffusion QMC has been problematical. We
report here a new method which is successful for correlated sampling in diffusion
QMC and produces accurate energy differences for similar systems at the diffusion
QMC level.

We have described previously several versions of a quantum Monte Carlo
method for the direct calculation of corrections to trial wave functions (1, 2). This
method gives - for fixed nodes - the difference δ between a true wave function
Ψ and a trial wave function Ψ0, as well as the difference between the true energy
E and the expectation value of the energy Evar for the trial wave function. The
statistical or sampling errors associated with the Monte Carlo procedures as well
as any systematic errors occur only in the corrections. Thus very accurate wave

© 2012 American Chemical Society
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functions and energies may be corrected with very simple calculations. The nodes
are unchanged and the wave functions and energies for these systems are corrected
to the fixed-node values - those corresponding to the exact solutions for the fixed
nodes of the trial wave functions.

We have also described previously some correlated diffusion QMC
calculations for similar structures of the H3+ ion (3). These took advantage of
scaled length and energy parameters, but were only mildly successful because
the initial correlation of electron positions was diminished as the calculations
proceeded.

In thework reported herewe have combined the latest version of the correction
method (2) with the correlated sampling in diffusionQMC (3). We have carried out
correction calculations for cases of two similar systems with correlated sampling
of electron positions, moves, and multiplications wherever possible. Since the two
systems are slightly different, the initial similarity in walker positions and weights
is not maintained exactly, but the correction calculation is fairly short, and the
systems remain nearly similar over the length of the calculation.

Theoretical Basis

The derivation of the latest version of our correction scheme is given in Ref.
(2). We give a brief description here. The basic equation is that for QMC with
importance sampling (4–7) where f = ΨΨ0, the product of the true wave function
and a trial wave function, and Eref is a reference energy,

Making use of the difference δ = Ψ – Ψ0 and defining another function g =
δΨ0 = (Ψ – Ψ0) Ψ0 we obtain

The term HΨ0 /Ψ0 is the local energy Eloc for the trial wave function. The last
term in Eq. (2) is a distributed source term S, which may be positive or negative.
It is convenient to introduce the expectation value of the energy Evar for the trial
function and write S as a collection of terms

where
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and where the subscript p indicates a region Eloc < Evar and a positive particle feed,
the subscript n indicates a region of Eloc > Evar and a negative particle feed, and
the subscript q indicates an additional particle feed, normally negative.

We consider the integrals of each of the terms in Eq. (2) over all accessible
space. Thus we define the integrals

and Eq. (2) becomes

Since the diffusion and drift terms merely move particles within the
volume and the drift term prevents their crossing a nodal surface, they make no
contribution to changes in Ig , and they are zero and may be eliminated. The
multiplication term containing (Eloc – Eref) is applicable to each particle fed to the

system. An average growth factor , , for each type of particle during
its lifetime in the system may be combined with the feed terms. Thus we obtain

Since particles fed at any point in the system tend to the same distribution
with increased time in the system, those of sufficient age may be cancelled in
equal weights, positive with negative, regardless of their locations. For a steady
state and for a complete cancellation of positive and negative particles at a fixed
age we have ∂Ig/∂τ = 0, and the energy E is equal to Eref which is given by (after
rearrangement)

5
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To determine the energy one then needs to obtain only the ratios of the
integrals Ip/Iq and In/Iq rather than the individual values. Also needed are the

values of , and as well as Evar .
The ratios of the integrals may be determined by numerical integration,

typically by Metropolis sampling of Ψ02 with accumulation of average values of
Ip/Iq and In /Iq. Their definition in terms of Evar ensures that the absolute values of
these ratios be equal and uncertainty in their relative values is eliminated. Since
an accurate value of Evar is required, an analytic integration to determine Evar is

preferred. The values of , and are determined for sample feed particles
obtained in the Metropolis integrations. These are selected with probabilities
proportional to (in addition to Ψ02 ) the absolute values of the quantities [– (Eloc –
Evar)]p for p, [– (Eloc – Evar)]n for n, and unity for q. The particles are subjected to
diffusion, drift, and multiplication (weight increase or decrease) for a period (age)
sufficiently long to produce no further change in their average weights. Positive

particles of type p, fed in regions of Eloc < Evar , give values of > 1. Negative

particles of type n, fed in regions of Eloc < Evar , give values of < 1. Particles

of type q normally give a value very close to unity.
The energy E is given by the known value of Evar and a correction term. When

Ψ0 is a good approximation to the true wave function, the correction term is small
and any error in the correction term is correspondingly small. As Ψ0 approaches

the true wave function the ratios Ip/Iq and In/Iq approach zero and the values of ,

and approach unity.

Introducing Correlation

To calculate the difference in diffusionQMCenergies for two systemsA andB
the variational energies EvarA and EvarB for the two systems and their difference are
determined in correlated variational QMC calculations usingMetropolis sampling.
Electron positions may be identical for the two systems or scaled in one way or
another to maintain similarity. The sampling may be carried out with a value (or
weight) function W given by WA + WB , the sum of squares of the two trial wave
functions. In this case the energy for each system is given by the weighted average
of its local energies using weights proportional to WA or WB. If the two systems
are nearly the same the statistical error in the difference EvarA – EvarB will be much
smaller than the statistical error in the individual values EvarA and EvarB. The values
of Ip, In, and Iq as well as sample configurations of type p, n, and q are retained.

The next step is a correction calculation for each of the trial wave functions
carried out as described in the section above using the correlated type p, n, and q

samples to determine values of , and for each of the systems. For these
correlated diffusion QMC calculations the initial electron positions correspond but
the initial weights as found in the variational calculations may vary for the two
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systems. The drift terms and the multiplication terms may also vary, but if the
systems are similar the differenceswill be small. The diffusion terms and the points
of multiplication are matched for the two systems, so that electron movements and
multiplications are correlated as much as possible. Since the initial configurations
p and q are deviations from typical configurations, their local energies also deviate,

and the changes in weights and contributions to the values of and are large
at the start of a run. To avoid time-step error the time-step size must be very small
at the start. As the run proceeds the walkers approach normal behavior and the

values of and approach their asymptotic values.

A Simple Test: Neon vs. Neon (moved slightly)

To test the method we calculated the difference in diffusion QMC energies
for two systems A and B which are known to have the same energy: a neon atom
in each case (non-interacting) with the first located at the origin of coordinates
and the second displaced a short distance from the origin. The displacement was
0.02 bohr. Each had a trial function consisting of a fairly good SCF function and
a Schmidt-Moscowitz (8) Jastrow function centered on its nucleus. The two trial
functions were identical except for positioning. In the variational calculation the
sampling value for walker moves was taken as the sum of the squares of the trial
functions. The results are shown in Table 1.

Table 1. Correlated DQMC: Ne vs. Ne shifted 0.02 bohr

Energies (hartrees)

Ne #1 Ne #2

Evar –128.867 504 –127.867 268

(VQMC) ± 0.000 090 ± 0.000 086

Ecor –128.924 310 –128.924 195

(DQMC) ± 0.001 100 ± 0.001 100

Ecor difference –0.000 115

±0.000 077

Eexact a –128.9376 –128.9376
a Reference (9).

It may be seen that the uncertainty in the difference for variational energies
is 16 microhartrees and that for diffusion energies is 77 microhartrees, while
the corresponding uncertainties in the individual values are about 90 and
1100 microhartrees, respectively. The 77-microhartree error in the calculated
difference in diffusion energies is about the same as the indicated statistical
error in that quantity. This is the desired result. That is, the known difference in
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DQMC energies (zero) is reproduced (as 0.000 115 ± 0.000 077 hartrees) despite
uncertainties of 0.001 100 hartrees in the individual values.

Comparison of Two H2 Molecules

A second example, for which the energy difference is known nearly exactly,
is the case of two ground-state H2 moleculas with slightly different internuclear
distances, the first with R = 1.4000 bohr and the other with R = 1.4011 bohr. In
this case the wave function is nodeless. The trial function was a high quality
single-determinant function with an optimized Jastrow term. The time-step and
distance parameters for the diffusion calculations were scaled to place electrons
in geometrically similar positions – in effect by placing the nuclei in identical
positions in the scaled systems. The results are shown, together with those
of accurate analytic variational calculations by Cencek and Szalewicz (10) for
comparison, in Table 2.

The table shows the desired effect: the uncertainty in the calculated difference
in the DQMC energies (0.040 microhartrees) is much lower than the uncertainties
(4.800 and 5.300 microhartrees) in the DQMC energies of the calculations
considered separately.

Table 2. Correlated DQMC: H2 with R = 1.4000 bohr vs. H2 with R = 1.4011
bohr

Energies (hartrees)

R = 1.4000 R = 1.4011

Evar –1.173 434 517 –1.173 433 737

(VQMC) ±0.000 000 130 ±0.000 000 130

Ecor –1.174 470 644 –1.174 470 901

(DQMC) ±0.000 004 800 ±0.000 005 300

Ecor difference –0.000 000 257

±0.000 000 040

Eexact differencea 0.000 000 217

Eexact a –1.174 475 714 –1.174 475 931
a Reference (10).

The table shows the desired effect: the uncertainty in the calculated difference
in the DQMC energies (0.040 microhartrees) is much lower than the uncertainties
(4.800 and 5.300 microhartrees) in the DQMC energies of the calculations
considered separately.
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Comparison of Two C10 Rings

A third example, for which the energy difference is not known exactly, is the
case of two C10 rings of slightly different radii. The ten carbon atoms were placed
evenly on circles, one with a radius of 2.04 bohr, the other with a radius of 2.08
bohr. The circles were centered on the origin, and the length and time scales of
the second were adjusted to obtain geometric and dynamic similarity. The trial
wave function was a single determinant function with a Jastrow term, the same for
both systems. The effect of geometric scaling was to give different values for the
wave functions and local energies for corresponding electron configurations. The
results are shown in Table 3.

Table 3. Correlated DQMC: C10 circle (R = 2.04 bohr) vs. C10 circle (R
= 2.08 bohr)

Energies (hartrees)

R = 2.04 R = 2.08

Evar –379.4307 –379.4319

(VQMC) ± 0.0067 ± 0.0053

Ecor –379.4485 –379.4500

(DQMC) ± 0.0130 ± 0.0130

Ecor difference + 0.0015

± 0.0013

Again the results show significantly lower statistical errors for the differences
in variational QMC energies and the differences in diffusion QMC energies
than for the individual values of these energies. The uncertainty in the diffusion
QMC difference is approximately equal to the indicated difference as expected
for a minimum in the energy. Additional calculations for slightly different
geometries indicate a minimum at a radius of about 2.08 bohr. Independent
analytical calculations (MP2, with substantially different trial functions) indicate
a minimum in the range of 2.08 to 2.12 bohr.

The Neon Dimer

The neon dimer represents a special challenge to quantum mechanics in
general, and this challengemight bemet by correlated diffusionQMC calculations.
One should expect significant cancellations in calculations for separated neon
atoms (Ne + Ne) vs. the Ne dimer (Ne-Ne) at or near its equilibrium separation
distance of about 5.8 bohr. The trial function used was the product of two single
atom functions (as used for the Ne atom above) with additional cross terms in the
Jastrow function. The results are shown in Table 4.
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Table 4. Correlated DQMC: (Ne + Ne) vs. Ne2 (R = 5.8 bohr)

Energies (hartrees)

Ne + Ne Ne2

Evar –257.538 127 –257.538 261

(VQMC) ± 0.000 200 ± 0.000 200

Ecor –257.845 542 –257.846 338

(DQMC) ± 0.000 500 ± 0.000 400

Ecor difference – 0.000 796

± 0.000 700

In this case we were successful in demonstrating the effectiveness of
correlated variational QMC and obtained a well depth of 0.000134 +/- 0.000009
hartrees, in good agreement with accepted values derived from experiment (11).
But, for the correlated diffusion QMC the indicated well depth was 0.000796 +/-
0.000700 hartrees. With this large value of the statistical error, we conclude that
a much better trial function is required for this difficult case. We expect to pursue
this case further.

Discussion

It is clear that correlated sampling provides significant improvements in the
determination of differences in diffusion QMC energies of similar molecular
systems. Of course, the accuracy in the differences in calculated energies depends
strongly on the degree of similarity of the systems compared. For closely similar
systems the difference method can provide (loosely) the derivative in energy with
respect to a variable describing the difference in the systems.

We note that the method of correlated sampling in diffusion QMC described
here can be applied, in a similar fashion, to the optimization of a trial wave
functions. In this case, we compute the difference in diffusion QMC energies for
the same system and two similar wave functions. Since the difference in energies
depends only on the node locations, the node structure may be optimized, thereby
providing a solution to the so-called ‘sign problem of quantum Monte Carlo’. We
are encouraged by our early investigations.
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Chapter 2

Population Control Bias with Applications to
Parallel Diffusion Monte Carlo

Jaron T. Krogel*,1,2 and David M. Ceperley1,2

1Department of Physics, University of Illinois, Urbana-Champaign,
Urbana, Illinois 61801

2National Center for Supercomputing Applications (NCSA),
University of Illinois, Urbana-Champaign, Urbana, Illinois 61801

*E-mail: jkrogel2@illinois.edu

The future of scientific computing will be driven by highly
distributed parallel machines with millions of compute nodes.
In order to take advantage of this already arriving wave
of computing capability we must identify and remove the
remaining barriers to parallel scaling in the Diffusion Monte
Carlo algorithm. To address these scaling issues in a simple
way, we propose that a time delay be introduced into the
population control feedback. In order to assess this algorithm,
we investigate the behavior of population fluctuations and
the population control bias (which will emerge into greater
relevance with larger physical systems and requirements of
higher accuracy) in a model system for both the standard and
time delayed DMC algorithms. We then condense our findings
into a simple set of recommendations to improve the scaling of
DMC while managing the population control bias.

The Future of Parallel DMC

Modern parallel machines are composed of tens of thousands of SMP nodes
which will rapidly increase into the millions in coming years. Keeping pace
with such developments is crucial to the success of scientific computing. Monte
Carlo methods are particularly well suited to make use of this ever increasing
computing power since they contain low serial dependency. In Markov Chain
Monte Carlo, a function is evaluated along a large chain of randomly generated

© 2012 American Chemical Society
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particle configurations to obtain its mean. Conceptually, we think of the chain
as a random walk, meaning that it is formed by a walker which steps from
configuration to configuration. Typically, straightforward replication of Monte
Carlo random walks allows near perfect scaling, however a central feature of
any Monte Carlo algorithm will limit the practical efficiency gains realized when
scaling to millions of processors: the equilibration time of the random walks.

The bottleneck due to equilibration time arises from the pursuit to simulate
ever larger systems. Since the time to obtain new configurations is increased,
the equilibration time consumes a larger fraction of the fixed serial run time. A
direct way to minimize the ratio of serial equilibration time and total run time is to
minimize the number of walkers per SMP node. For manyMonte Carlo algorithms
it is possible to achieve the exact minimum of just one walker per node; however
this is not the case for the standard Diffusion Monte Carlo (DMC) method.

DMC is a Monte Carlo procedure to solve the many-body time independent
Schrödinger equation (1, 2). It is currently the most widely used Quantum Monte
Carlo algorithm for chemical and condensed matter systems. In the standard
algorithm, the population of walkers fluctuates through a birth-death process
known as branching and so load balancing challenges arise in the limit of few
walkers per node. For example, a set of nodes each running with a single walker
will quickly evolve into a situation where nodes contain zero, one, or two or
more walkers each. In this circumstance, the overall efficiency can fall since all
walkers must complete a step before the trial energy is collected and branching is
performed. In typical implementations, current codes use on the approximately
one hundred walkers per node to avoid load balancing inefficiency, however this
leads to equilibration inefficiency as mentioned above. Though load balancing
operations cannot perfectly redistribute the load for arbitrary population sizes,
they will have to be performed frequently to prevent the situation from becoming
even worse. Since most implementations of load balancing rely on operations
within the Message Passing Interface (which impose synchronization at some
level), parallel efficiency will further suffer with increasing machine size. At the
same time, the branching process must be tightly regulated to prevent chronic
shortages of walkers which could leave large numbers of nodes idle.

Demanding smaller fluctuations in the DMC walker population (greater
stability) increases a systematic error within DMC as we detail below. However,
with the advent of larger machines, a greater level of accuracy will inevitably be
pursued, requiring parallel algorithms with greater robustness and less bias. Thus
the population control bias, which has largely been neglected in the past, could
become increasingly relevant to future applications.

In this work, we explore the relationship between the population control
parameters and the stability and accuracy of the standard DMC method. Using
a simple and efficient model problem, the simple harmonic oscillator, we obtain
empirical formulas describing the behavior of population stability and the
population control bias over a range of control parameters. Since we expect
population dynamics (and hence stability and bias) to depend more strongly on
the control method used than the particular details of the physical system, these
results should apply broadly to current DMC practice.
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Looking ahead to the rapidly approaching parallel efficiency difficulties
outlined above, we move on to a possible solution to the scaling problem. We
propose the introduction of a feedback delay in the population control mechanism
which removes synchronization requirements from the algorithm and allows load
balancing techniques that capitalize on keeping the time averaged load constant
rather than the instantaneous load. These features ease the tradeoff between serial
and parallel efficiency. As we must be cautious not to introduce unmanageable
instability or bias into the simulation, we repeat the model analysis on cases with
delayed feedback. These results are then consolidated into a brief set of practical
recommendations to improve the parallel efficiency and reduce the population
control bias in typical DMC simulations.

Other types of QuantumMonte Carlo, such as Reptation (3) and Path Integral
Monte Carlo (4), do not suffer from population control bias. However, those
methods have not been systematically applied to systems of many electrons, and
in particular, there have been no studies of their relative efficiency, e.g. how
their errors scale with computer time and number of electrons. In addition, these
methods have other difficulties in scaling to very large number of processors. For
these reasons, we limit the discussion to Diffusion Monte Carlo.

Review of the DMC Method

The Diffusion Monte Carlo algorithm (1, 2) can be viewed as a technique to
iteratively refine the standard variational method (5). In the variational method,
an ansatz for the many-body wavefunction (ψT) is optimized to be as close as
possible to the true ground state, usually byminimizing a combination of its energy

moments, . The Hamiltonian operator, Ĥ, is given by

The variational energy obtained by integrating the local energy (EL=ψT-1ĤψT)
over the trial probability density (f0 = |ψT|2) is a strict upper bound on the ground
state energy of the system.

In DMC, the variational probability density is evolved forward in imaginary
time through the iterative application of a short time Green’s function.
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The importance sampled (1, 2, 6, 7) form of this propagator

optimally guides the trial probability density toward the mixed distribution (ψTψ0)
which is composed of the trial and exact ground state wavefunctions. In fact,
the probability density evolves toward the mixed distribution exponentially fast in
imaginary time.

The exponential factor on the right hand side of equation 5 provides the first
glimpse of an instability in the DMC algorithm which will be addressed in the
context of population control. The trial energy, ET, is selected as close to the
ground state energy (E0) as possible to prevent the norm of the distribution from
vanishing or diverging within the timescales of interest. The rapid evolution of the
probability density similarly means that the DMC energy

will also experience exponential convergence from the variational energy at zero
time to the exact ground state energy at large imaginary times.

Thus far, we have considered only the formal outline of the DMC algorithm.
The conversion of the formal method into a Monte Carlo sampling process
introduces the practical issues of efficiency, stability, and accuracy. In practice,
the short time Green’s function is approximately factorized into a product of
diffusion and branching terms.

Here the magnitude of the timestep, τ, is determined by the acceptable level
of error in the breakup; later on τ will take on a meaning which differs from this
standard usage. The diffusion term determines the spatial motion of the random
walks, causing them to undergo Brownian motion which is biased toward regions
of high probability as represented by the trial wavefunction. The branching term
acts as a configurational weight, which is typically implemented as a birth-death
process of the walkers.

The walker population at finite imaginary time is represented by the norm of
the mixed distribution:
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Recalling the large time limit of the probability density in equation 5, it is clear
that the walker population will perish or diverge, depending on the value of the trial
energy. Yet, even if the trial energy is exact, local fluctuations in the branching
weights (eq 7) will cause the dynamic population to vary in an unbounded fashion
as imaginary time progresses. This is evident from the fact that the integral in
equation 8 is approximated by a sum over allMonte Carlo trajectories (prior walker
populations) which involve products of the branching weights up to time t-τ. Thus
the future weight of a single walker, represented by the number of its descendants,
will exponentially disappear or diverge depending on the local energy along its
future trajectory. The collective effect of unhindered branching is an instability in
the walker population, which is clearly intolerable from a practical perspective.

Several procedures have been invented to restrict the fluctuations of
the walker population at the expense of introducing additional bias into the
calculation. Such procedures generally fall into one of two camps: fixed
population methods, such as the “comb” (8, 9) and reconfiguration algorithms
(10, 11), or the dynamic adjustment of the trial energy (1, 2, 12, 13). In this work,
our attention will be restricted to the latter, as it is the most widely used method
for population control in the DMC community. In the standard population control
procedure, the trial energy is modified in the following way:

Here, the average indicates the current best estimate of the total energy and Pt
and P0 are the current and target populations, respectively.

The calculation of the total energy and population is what binds together the
otherwise independent walkers, and causes a parallel bottleneck. The control
parameter, g, is somewhat arbitrary and equals the typical number of generations
(or branching steps) required for the population to return to its target value. In the
absence of fluctuations, the population will return to its target value in exactly
gτ units of imaginary time. These population control adjustments perturb the
branching weights and hence introduce bias into any estimators. If the control
parameter is too large, the population fluctuations will be hard to control; if it is
too small, there could be a large bias on the estimated energy.

The population control bias has been addressed in only a handful of studies
to date, possibly because its magnitude has been small for the typical range of
physical system sizes (14). Though it has been known for some time that this bias
ultimately scales exponentially with physical system size (13, 15), it seems that
this fact is only becoming appreciated more recently (16, 17). It has been shown
that the bias will decrease linearly with target population size (12, 13, 15, 18)
and will decrease if the uncontrolled population fluctuations are small (10). The
population control bias can be systematically reduced by updating the trial energy
less often (12), increasing the target population size, loosening the dynamic control
(13) (increasing g), or using importance sampling (12, 13, 18) with a better trial
wavefunction. Attempts to completely correct for the bias include extrapolation
in 1/P0 (12, 13) which requires many runs, and reweighting samples over a partial

17

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
M

ay
 2

7,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
00

2

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



history (13, 15) in a single run, though this is not always more efficient than the
extrapolation approach (19).

Delayed Feedback DMC

The pursuit of higher accuracy is one of the main reasons larger machines
are developed for computational science. In the context of Quantum Monte Carlo
this means that continual effort must be given to minimize statistical error and
systematic biases. In order to meet these goals, we wish to reformulate Diffusion
Monte Carlo in a simple way that removes the bottleneck to parallel efficiency and
does not exacerbate the population control bias. Any modifications to the DMC
algorithm should also maintain the stability of the algorithm, i.e. the population
fluctuations must be controllable. Finally, we require that reproducibility be
maintained, specifically that simulation results should not depend on machine
conditions such as the number of nodes used or interruptions from background
daemon processes.

A simple way of meeting these requirements is to introduce a time delay, or
lag, in the population control feedback. Thus the trial energy used at time t only
requires information from all walkers at time t-L. The opening of this window in
“time” postpones any synchronization demands, and may remove them entirely
provided that a load balancing can be done within this time window. This opens
the possibility of near perfect parallel scaling even for a very small number of
walkers per node. Introducing a feedback delay clearly satisfies the requirement
of reproducibility since information from different imaginary times is not mixed.
Its impact on stability and bias is not as obvious and requires further consideration
and testing.

In general, the introduction of a feedback delay should decrease the stability
of the simulation, meaning that fluctuations of the walker population should grow
larger. Crudely speaking, the effect of the time delay is to increase the population
control parameter (g) by the length of the delay (L), since it will take Lmore steps to
reign in population fluctuations than it would otherwise. This loosening of control
will allow larger fluctuations, increasing the probability that the population will
explode, vanish, or simply become too volatile for effective load balancing.

The impact of a feedback delay on the population control bias is somewhat
more subtle. To see its effect, consider walkers entering a region of very low local
energy. Without a feedback delay, the population will immediately rise, causing
a sharp response from the population control mechanism and hence a large bias.
Introducing a time delay will allow walkers to diffuse back out of this biasing
region before branching, thus smoothing out its effect and reducing the bias. The
effect may or may not be large, but at the very least the introduction of delayed
feedback should not increase the population control bias.
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Dependence of Stability and Accuracy on DMC Parameters
The impact of delayed population feedback on stability and accuracy needs

to be studied and quantified, with attention given to its interrelationship with
other parameters used in DMC. Relevant parameters include the target population
size, population control parameter, branching frequency, and trial energy update
frequency. In order to probe these relationships empirically, we have developed
a model that implements DMC for one of the simplest possible systems, the
one-dimensional harmonic oscillator. This model is justified because the bias and
population fluctuations should depend more strongly on the control method used
than the actual details of the physical system.

Model System

The simple harmonic oscillator has the advantage that its imaginary time
propagator is known exactly. This fact can be exploited to eliminate the timestep
error typically incurred by the breakup into diffusion and branching terms (see
eq 7). With the timestep error removed, the only bias remaining is due to the
population control procedure, allowing us to study it in isolation and hence much
more accurately. In order to mimic DMC, the importance sampled propagator is
again factored into diffusion (Gd) and branching (Gb) terms:

In the limit of small imaginary time, the results in equation 7 are recovered.
Though the resulting DMC algorithm has no timestep error, the timestep used

here still has an important connection to typical DMC simulation. In standard
DMC, there are three timescales which are relevant to the discussion of population
control bias. The first is the Trotter timestep, τt, which appears in the standard
breakup given in eq 7. This timescale relates to the timestep error and it has been
purposefully removed from our model. The other timescales are the branching
period, τb, which is the time between branching operations, and τu, the time
between updates of the trial energy (ET). Branching more often without adjusting
the trial energy should have no adverse effect on the bias, and so we set τb = τu in
our simulations. For the remainder of the work, we refer to this timescale as the
timestep or the update period and will write it as τ. The bias will increase with
more aggressive population control, and thus we expect to see a larger population
control bias at small timesteps in our results.

The potential and trial wavefunction used for the model system are given by

with all quantities listed in dimensionless units (ħ = 1, m = 1/2). The exact ground
state energy for this system is equal to 1 and the ground state wavefunction is
obtained when a = 1. Since a poor trial wavefunction will increase the branching
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rate, and thus more strongly manifest the population control bias, we use a trial
function with a = 0.1 which badly oversamples low probability regions.

The exact importance sampled propagator, or Green’s function, is given by

Where c and s are defined as

The Green’s function is then integrated, as in equation 10, to obtain the
effective branching weight and diffusion transition probability.

The transition probability can be sampled exactly using a Gaussian random
number generator.

Definitions of Stability and Bias

Let us define exactly what we mean by stability and bias in DMC. Defining
bias is straightforward: it is simply the deviation away from the exact ground state
energy.

Stability is most easily quantified in terms of its opposite: the volatility of the
walker population. Here we define volatility as

which is the magnitude of population fluctuations.
Perhaps a more direct measure of stability is the probability that a simulation

will not fail, meaning that the population remains within a practical range (we
have used ). Given the inexpensive nature of our calculations,
we also explore this quantity by repeating runs many times in volatile areas of
parameter space (which is spanned by g, P0, and τ). These quantities are linked
in the sense that isosurfaces of the volatility closely match those of the stability.
The reason for this close relationship is that both quantities are determined by the
width of the population distribution. Thus conclusions drawn from the volatility
are valid reflections of how viable, or stable, DMC simulations will be.
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Results with Zero Feedback Delay

A series of long simulations (3.34 x 108 samples) were performed over a range
of control parameters (g = 1, 2, 4, 8, 16, 32, 64, 128), population sizes (P0 = 8, 16,
32, 64), and update periods (τ = 0.0025, 0.005, 0.01, 0.02, 0.04). These population
targets are very small, but were chosen so that the volatility and bias would be
increased and thus computed more accurately.

The relationship between volatility (ν), control parameter (g), target
population size (P0), and update period (τ) can be inferred from figure 1. The data
for various population sizes (differentiated by symbol) largely lie on top of one
another, demonstrating the inverse relationship between volatility and population
size. Simulations with P0 = 8 were largely unstable and have been excluded
from the fits (though the 1/ P0 relationship still clearly held for these runs). The
data also support a power law relationship between the volatility and gτ. Slight
deviations from power law behavior were found for g < 4 (data not shown). As
g is taken below the critical threshold of 1, the population feedback overcorrects,
causing the population to oscillate within an exponentially growing envelope.
Thus, g can be regarded as an independent parameter only as this instability is
approached (small g). To summarize, we find that:

Figure 1. Population volatility vs. combined population control parameter and
update period.
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A similar relationship can be obtained for the population control bias. Figure 2
displays results for the bias over the same range of parameters in Figure 1. Again,
it is immediately clear that the bias scales inversely with target population size.
The bias is clearly not a power law in gτ, but a logarithmic fit conforms to the data
almost perfectly. The bias then approximately satisfies the empirical relation

where tf is a constant roughly equal to 3.0. It should be noted that this form cannot
hold in the limit of large gτ because the bias must strictly vanish in this regime. A
simple analysis of DMC using continuous weights rather than branching reveals
that the bias must transition to an inverse relationship in the large gτ limit.

Figure 2. Population control bias vs. combined population control parameter
and update period.

Alhough we have studied the bias in a simple model problem, our results
should hold for other systems of typical interest involving singular potentials or
the fixed node constraint. These complicating factors will indeed affect the bias,
since they change the local energy distribution. However, the central limit theorem
implies that these local energies, if averaged over enough steps, will converge to
the same distribution as the model case, but with a different variance. Therefore
the effects of nodes and singular potentials should be contained only within the fit
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constants in eq 18, and not in its functional form. Though this argument is fairly
general, explicit tests of such systems should be made to fully confirm its validity.

Results with Finite Feedback Delay

For the introduction a finite feedback delay (L), we expect that most of the
prior results will simply be modified by replacing g with g+L. This expectation is
largely borne out by the data, especially in the case of the volatility. Figure 3 shows
filled stability contours of a 64 walker simulation with unstable regions becoming
increasingly dark. Though the stability (probability of a successful run) is shown
here, the essential features are identical to the inverse volatility. A dramatic effect
of the feedback delay is seen in the region of tight control (small g) and finite delay.

The strong instability seen in this region is a manifestation the critical
instability discussed earlier, only here the system becomes unstable for all g <
L+1. In this regime, population fluctuations are overcorrected, similar to the
feedback experienced when a microphone is placed next to a loudspeaker. The
upper solid line in the plot marks the expected isostability curve geff = g + L shown
along the boundary between stability and instability. For systems with smaller
target populations, the stable (white) region becomes narrower and the predicted
contour matches well with the observed stability until the critical instability is
approached. Thus equation 17 is extended to obtain eq 20 as long as the time
delay satisfies eq 21.

Provided L is chosen somewhat below this bound, the time delayed method
should be as stable as the standard algorithm with a control parameter of g + L.
Though the triangular stability region narrows as L increases, it should be noted
that its size will increase proportional to the target population size.

Results for the population control bias demonstrate that a feedback delay does
reduce the bias, though the beneficial effects are partially checked by an increase
in volatility. Figure 4 illustrates this situation by showing the real decrease in the
bias after the increased volatility is accounted for. Time delayed simulations were
performed with a fixed control parameter (g = 32) over a range of delays (from 0 to
32). The time delayed data are plotted at an effective control parameter (g+L), so
that data displayed at a particular value of g have the same volatility. It appears at
first that adding a time delay equal to the control parameter halves the bias relative
to the undelayed case. However, after the data are shifted to reflect the loss of
stability, the actual gains are smaller. Still, increasing the feedback delay can be
an effective means for reducing the population control bias provided the increased
volatility is acceptable.
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Figure 3. Stability vs. feedback delay and population control parameter shown
with instability lines for P0=64 and τ=0.01. Brighter regions are more stable.

Figure 4. Population control bias vs. effective control parameter for standard
(black) and time delayed (red) DMC at τ=0.01 and P0=32.
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Practical Recommendations for DMC Simulations

Optimizing the balance between efficiency and accuracy is a significant goal
of any discipline which employs large scale simulation. Finding the right tradeoffs
in DMC is a case of selecting optimal values for the control parameters. Using
the insight gained from the model system, we are now in a position to effectively
navigate the parameter space toward the optimal solution.

A natural benefit of increasing machine size is that the target walker
population must scale in the same way, providing an added reservoir of stability
to the simulation and damping the bias. The increase in the size of the simulated
physical system requires a decrease of the number of walkers per node in order
to restore the serial efficiency lost from longer equilibration times. The low
walker count per node increases the total idle time due to more interactions with
synchronization barriers and strains load balancing algorithms, further reducing
the parallel efficiency.

Introducing a population control feedback delay of sufficient length should
push back the synchronization barriers inherent in standard DMC. Though the time
delaywill increase the volatility of the walker population, and thus require frequent
attention from the load balancer, there will be more time to get the balance right
before the energy must be accumulated. The load should be defined in this case as
the amount of time required to advance all walkers to a specific point in imaginary
time, such as L steps beyond the average projection time of the walkers.

The population control parameter (g) should be selected so as to satisfy the
lower bound in equation 21 while keeping it as small as is necessary to reign in
the population fluctuations. If the population control bias is a primary concern,
the population correction in the trial energy could be updated less often and/or
standard correction methods such extrapolation (12) or reweighting (13) could be
employed.

Conclusion

We have established empirical relationships which reveal the dependence
of the population control bias and population volatility on the trial energy
update period, population control parameter, and target population size. Though
established by a thorough investigation of a simple model system, we expect
that these relationships will apply generally to Diffusion Monte Carlo. We have
proposed a simple modification to the DMC algorithm, namely the use of delayed
feedback in the population control mechanism, which should increase the parallel
performance of DMC simulations. This modification, which requires minimal
change to existing codes, should function well with only a few walkers per node
which will reduce the fraction of CPU time spent on walker equilibration. Model
results have shown that the introduction of a feedback delay moderately reduces
the population control bias after the increase in population volatility has been
accounted for. Finally, we have provided general recommendations to improve
serial and parallel efficiency while reducing bias by adjusting only the trial energy
update frequency, population control parameter, and feedback delay. Future work
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will investigate the population control bias in real physical systems to assess the
adequacy of conclusions drawn from the model system.
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Chapter 3

Enhancement of Sampling Efficiency in
ab Initio Monte Carlo Simulations Using an

Auxiliary Potential Energy Surface

Akira Nakayama* and Tetsuya Taketsugu

Division of Chemistry, Graduate School of Science, Hokkaido University,
Sapporo 060-0810, Japan

*E-mail: akira-n@sci.hokudai.ac.jp

An approach is developed to enhance sampling for ab
initio Monte Carlo and ab initio path integral Monte Carlo
calculations of molecular clusters by utilizing an approximate
potential as a guide to move in the configuration space more
efficiently. Two methods are introduced in this chapter, where
the first one utilizes the interpolated potential energy surface
obtained by the moving least-squares method, and the second
one employs the molecular dynamics scheme to update the
system configuration in the context of hybrid Monte Carlo
method in which potential energy gradients are evaluated by
computationally less expensive ab initio electronic structure
methods. The sampling efficiencies in both methods are
demonstrated for a water molecule and hydronium cation.

I. Introduction

Computer simulations via molecular dynamics (MD) and Monte Carlo (MC)
methods are widely used in a variety of fields ranging from drug design tomaterials
science (1). Instead of using empirical force fields, ab initio molecular dynamics
or ab initioMonte Carlo methods, which solve the electronic Schrödinger equation
for nuclear potential energy (or its derivatives) as needed, are now being widely
used to investigate static and also dynamic properties of molecular systems from
first principles. The computational cost for such ab initio simulations is, however,
still highly expensive when combined with statistical simulations since 105-106

© 2012 American Chemical Society
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simulation steps are usually required, thus limiting their applicability to relatively
small system sizes.

A Monte Carlo simulation is efficient in empirical force fields, especially
when the total potential is represented by a sum of the additive interactions. In
each MC step, the pair interactions only between the ‘chosen’ atom and other
atoms are needed to evaluate, i.e. it is not necessary to evaluate the potential of
the whole system. If one employs the primitive approach for ab initio Monte
Carlo calculations, ab initio potential energy must be calculated in each step even
if only one atom is chosen to move, which does not seem to be efficient compared
to simulations with empirical force fields. In contrast to ab initio Monte Carlo
calculations, ab initio molecular dynamics has the advantage that the whole
molecular configuration is updated in each time step. However, the evaluation of
the ab initio potential energy gradients requires additional computational cost,
which could be several times more than that of energy calculation. Furthermore,
the module for the analytical energy gradients is not available for some highly
correlated methods such as CCSD(T).

In this chapter we demonstrate that sampling efficiency for ab initio Monte
Carlo calculations is realized by utilizing an approximate potential as a guide to
move in the configuration space more effectively. An auxiliary Markov chain is
generated on this approximate potential, and as an approximate potential, we adopt
an interpolated potential energy surface that is constructed by the moving least-
squares method (2). Also we introduce another simple scheme in the context of
ab initio hybrid Monte Carlo (HMC) calculations, which also enhances sampling
efficiency by utilizing the potential energy gradients of an approximate potential
for updating the system configurations (3).

These schemes are applied to a water molecule and hydronium cation (H3O+)
and the effectiveness of the present approach is analyzed in detail. Since quantum
effects of nuclei are important for hydrogen atoms, we also perform ab initio path
integral Monte Carlo (PIMC) calculations for these systems and the efficiency of
the method is again discussed.

This chapter is organized as follows: Section II presents details of the
simulation methods including a short review of the path integral Monte Carlo
method for the quantum treatment of nuclei. In Sec III the results obtained
by these methodologies are presented, along with the detailed analysis of the
efficiency of the method. Section IV contains the conclusions of this work.

II. Methodologies

Approximate Potential Method

The multiple Markov chain methods (MMC) (4) are originally developed to
enhance sampling in which Markov chains running at a higher temperature are
used to promote transition among different regions of high probability density.
The approximate potential (AP) method exploits this idea and uses an auxiliary
Markov chain that moves on the approximate and computationally less expensive
potential. In this method, a Monte Carlo importance sampling is performed on this
approximate potential, and after a fixed number of steps, the difference between the
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original and approximate potential is used as a criterion to restore sampling with
respect to the original potential. With this method, correlation in theMarkov chain
on the original potential is significantly reduced. Since the approximate potential
is chosen such that the computational cost for evaluation is much less expensive
than the original one, significant computational saving is attained. Iftimie et.al.
utilized this idea in the ab initio simulation of proton transfer reactions and used
molecular mechanics potentials as an approximate potential (5, 6). Gelb applied
this scheme to Lennard-Jones fluids and showed that the speedups by almost a
factor of four are obtained (7). Bandyopadhyay showed that this method can be
used to determine stationary points on the potential energy surface of molecular
systems (8).

In the AP method, the key to efficient sampling is finding a suitable
approximate potential. It is desirable that the approximate potential is close to
the original potential within a region of configuration space accessible at a given
temperature. This results in a high acceptance ratio and ensures an effective
sampling. When the approximate potential is identical to the original potential, the
acceptance ratio is always one. On the other hand, if the approximate potential is
appreciably different from the original one, the Markov chain on the approximate
potential may spend long periods of time in the region that is less significant
for the system. In some cases this could lead to less efficient sampling than the
conventional MC method.

We briefly describe the AP method for a canonical ensemble of classical
system, whose probability density is given as

where is the reciprocal temperature in units of the Boltzmann constant.
Here R is the configuration of the system and Z is the partition function. The
extension to quantum systems using imaginary time path integral formulation,
which will be described below, is straightforward. The procedure for the AP
method is as follows. Suppose that the current configuration of the system is
R(i). An auxiliary Markov chain is generated fromR(i)with the probability density

proportional to where Vap is the approximate potential. After a
fixed number of updates on the approximate potential, one attempts to move the
system configuration R(i) to the final configuration of the auxiliary Markov chain
(R(j)) with probability

One can see that the transition from R(i) to R(j) is performed based on the
difference between the original and approximate potentials. With this criterion the
microscopic reversibility for the system configuration
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is satisfied (5, 7), where P is the transition probability. The acceptance probability
given in eq. (2) is closely related to that of the parallel tempering method (4, 9, 10)
(also known as the replica exchange method (11)). If the above move is accepted,
another auxiliary Markov chain is generated from R(j), and if the move is rejected,
the current configuration of the system goes back to the original configuration
R(i) and another attempt is made. It is noted that the limiting distribution for
the system does not depend on the form of the approximate potential, provided
that the updating scheme on the approximate potential is ergodic. In the current
implementation of ab initio MC, ab initio calculation is performed at the final
configuration of the auxiliary Markov chain on the approximate potential.

The IMLS Approach

The approximate potential energy surface is constructed by the interpolation
method using the moving least-squares approach (12, 13). The modified Shepard
interpolation method (14) is widely used for construction of potential energy
surface and it is usually more efficient than the IMLS method. The modified
Shepard interpolation method requires the derivatives normally up to the second
order to obtain a reliable potential energy. The ab initio calculations of these
derivatives at reference points are computationally expensive for some highly
sophisticated electronic structure methods. The IMLS method, on the other hand,
yields a sufficiently accurate potential only with the potential energy. The IMLS
is relatively expensive since one needs to solve a weighted-least-squares equation
at each evaluation point, but still much less expensive than ab initio calculations
by several orders of magnitude.

The interpolated potential energy at a nuclear configuration Z is represented
by a linear combination of linearly independent basis functions bi(Z) as

whereM is the total number of basis functions. The coefficients ai are obtained by
minimizing the following weighted deviations:

Here, Nd is the number of reference data points and Vref(Z(i)) is the energy
value at point Z(i) in the dataset. The weight function wi(Z) decays with distance

so that the closer data points have a larger weight than the more distant
ones. Note that the coefficients ai are implicitly dependent on Z because of the
weight function. In this study, the coordinates are taken to be the reciprocal
internuclear distances (i.e., Zk = 1/rij), which is commonly used in the context of
the IMLS interpolations and also in the modified Shepard interpolations.
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The minimization condition with respect to ai leads to the following equation:

where , , and W is a

diagonal matrix whose elements are . B is composed of values of
the basis functions at Z(i) and given by

The interpolated potential for a given configuration Z is obtained by solving
the normal equation Eq. (6), which is implemented by using the singular value
decomposition (SVD).

In this work, we use polynomials up to the second order of each component
of Z as the basis functions. The weight function of the form

is employed throughout this study.

Path Integral Monte Carlo Method

The imaginary time path integral formulation of quantum statistics provides a
conceptual and computationally practical route for studying the quantum nature of
systems at thermal equilibrium (15). Based on Feynman’s notion that a quantum
system can be mapped onto a classical model of interacting “polymers” with path
integrals, the path integral Monte Carlo method has proven to be extremely useful
for studying finite temperature properties of many-particle systems. Quantum
effects such as zero-point motion and tunneling as well as thermal fluctuations are
included rigorously in this method and it is now seeing widespread use in a variety
of applications to chemical systems. A combination of path integral techniques
with ab initio calculations has been realized for systems where the empirical force
fields is not available.
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In the path integral Monte Carlo calculations, the expectation value of an
operator Â corresponding to an observable at thermal equilibrium can be expressed
as

where P is the number of time slices and is the canonical partition
function. Here we assume that the system of interest consists of N atoms with the

Cartesian positions . In the above equation, Â is assumed
to be a function of the position operator and cyclic periodic boundary condition
RP+1=R1 is imposed. A Monte Carlo sampling is performed according to the
distribution function given by

The staging PIMC algorithm (16, 17) is highly efficient as a sampling method
in PIMC, thus we employ this technique in a MC sampling on the approximate
potential. When applying the AP method to PIMC simulations, the acceptance
probability for the update of the system configuration from R to R′ is given by

Note that the harmonic spring terms cancel out. Therefore, the acceptance
criterion is based on the difference between the ab initio and approximate potential
at the current and trial configurations.

Hybrid Monte Carlo

The hybrid Monte Carlo method combines the advantages of both the MD
and MC methods, allowing the global update of the system configuration with
reasonable acceptance ratio (18, 19). It is an exact method and does not suffer
from the finite step-size errors of MD simulations. In an update process of the
system configuration, the time-reversible and area-preservingMD algorithm needs
to be used to ensure the detailed balance and the commonly used velocity Verlet
algorithm satisfies this requirement. The initial momenta P(i) are drawn randomly
from the Boltzmann distribution at the given inverse temperature β and after a
fixed number of MD steps, the final configuration R(j) is accepted according to the
following criterion
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where P(j) are momenta at the final configuration and ρ is the target distribution. In
this study, ρ is given as exp(−βV), therefore the acceptance probability is rewritten
as in the right-hand side of eq. (12).

Here we propose a method which employs a computationally inexpensive
(approximate) potential energy surface Vap and its gradient for an MD update part,
but uses the same acceptance probability given above to ensure that the target
distribution is still determined under the potential V. Note that P(j) are the momenta
which evolve under the potential Vap from initial phase space variables P(i) and
R(i). In the context of ab initio simulations, one can use energy gradients of less
expensive ab initio potentials for an MD update part. The numerical evaluation
of the energy gradients requires additional computational cost, which could be
several times higher than that of the energy calculation, thus there would be a great
saving in computational effort if the above approach is utilized. For example, the
potential energies are calculated at the level of CCSD(T)/cc-pVTZ, but energy
gradients of HF/cc-pVDZ level are used for an MD update. It nevertheless gives
the correct distribution determined by CCSD(T)/cc-pVTZ.

III. Results and Discussion

Simulations Using Interpolated Potential Energy Surface

Ab Initio Simulations on H2O

‘On-the-fly’ ab initio Monte Carlo calculations were performed on an
H2O molecule. The ab initio calculations were performed at the MP2 level of
theory using the MOLPRO2008.1 package (20). The segmented DZP basis set
augmented with diffuse functions (21) was employed. The reference points for
interpolation were sampled by classical molecular dynamics calculations at a
constant temperature of 300 K with the massive Nosé-Hoover thermostat chains.
The time step of 1.0 fs was employed and all configurations and potential energies
along the trajectory were stored as the reference data. This time step is not
appropriate from the viewpoint of the energy conservation, but it can explore the
configuration space more quickly. A total of 100 reference points were stored.
The ab initioMC calculation with Ns = 10 and Np = 100 was performed for a total
of 1,000,000 steps.

Table I shows the obtained average of the geometrical parameters and
potential energies along with these statistical errors and relative efficiencies. The
statistical errors are estimated by block averages. The result of the conventional
MC calculation (without using AP) is also displayed for comparison. The zero of
the potential energy corresponds to the energy at the equilibrium structure. The
ab initio PIMC calculations were also carried out for a total of 100,000 steps.
Reference points were generated by the ab initio molecular dynamics simulation
at T = 2700 K as described above. A Monte Carlo sampling on the approximate
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potential was performed with Ns = 96 and Np = 100 using the staging algorithm
with path length L = 6.

The obtained results are summarized in Table I, along with the result of the
conventional PIMC method (without using AP) employing the staging algorithm
with L = 6. Since we used the primitive form for the kinetic energy estimator, the
large statistical error for kinetic energywas observed in comparison to the potential
energy. The virial estimator is preferable for the kinetic energy, but since it requires
potential energy derivatives, we have not employed it here. The acceptance ratio
for the update of the system configuration is around 0.91 with a current set of
parameters, which is also a measure of the accuracy of the IMLS potential.

In this example on H2O, an increase in efficiency, which is propotional to the
inverse of the square of the statistaical error (the relative value with respect to
the conventional method is shown in the table), by roughly an order of magnitude
is obtained for both the classical and quantum simulations. It is noted that the
above AP simulations take only around 1-2% more in cpu time than that of the
corresponding conventional calculations.

Table I. Average of geometrical parameters and energies along with
these statistical errors and relative efficiencies for ab initio classical MC

(1,000,000 steps) and ab initio PIMC (100,000 steps) calculations on an H2O
molecule. AP is the result of calculation with the approximate potential. The
equilibrium geometrical parameters are ROH = 0.9640 Å and θ = 104.00

degree. The efficiency is relative to its value without using AP.

classical MC
(AP)

classical MC
(without AP)

PIMC
(AP)

PIMC
(without AP)

<ROH> (Å) 0.9669 − 0.9817 −

<θ> (deg) 103.95 − 103.79 −

<V> (K) 454.0 452.4 3180.1 3170.7

σV (K) 0.6 1.9 3.4 10.5

efficiency 8.9 1.0 9.9 1.0

<K> (K) − − 3960.8 4077.6

σK (K) − − 23.4 73.3

efficiency − − 9.8 1.0
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Ab Initio Simulations on H3O+

The hydronium cationH3O+ has been studied extensively in relation to Eigen’s
proton transfer mechanism in water. This cation is a floppy molecule and involves
the Walden inversion between pyramidal structures in the C3v symmetry. Previous
calculations by ab initio path integral molecular dynamics showed that theWalden
inversion is enhanced significantly by the inclusion of quantum effects of nuclei
(22).

Figure 1. Distribution functions of the distance between (a) the O atom and
H-H-H plane and (b) the O and H atoms. The solid and dashed lines are the

results of PIMC and classical MC calculations, respectively.

The ab initio MC and PIMC calculations were performed with Ns = 20 and
Ns = 96 for a total of 1,000,000 and 100,000 steps, respectively. A total of 500
reference points were generated by the molecular dynamics simulation at T = 2700
K and the nearest Np = 100 points were used for the fitting. Figure 1 shows the
distribution function of the distance between the O atom and H-H-H plane and
between the O and H atoms. The increased value at zero for quantum simulation
in Figure 1(a) reflects the fact that the inversion is enhanced significantly by the
quantum treatment of nuclei.

Again, in order to demonstrate the effectiveness of our method, the
conventional MC and staging PIMC calculations were performed for 1,000,000
and 100,000×P/(L-1) steps, respectively. Table II summarizes the obtained
geometrical parameters and energies, along with these statistical errors and
relative efficiencies. As seen in the table, an increase in efficiency by an order of
magnitude is obtained for the expectation values of energy. The acceptance ratio
for the update of the system configuration was ~ 0.81 and ~ 0.82 for classical MC
and PIMC simulations, respectively. It is noteworthy that simulation with the
acceptance ratio of around 0.8 still gives a significant reduction in computational
cost. One can improve this rate further by increasing reference points. With
the current set of parameters, the computational cost is increased by only 1-2%
compared to the conventional calculation.
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Table II. Average of geometrical parameters and energies, along with these
statistical errors (in kelvin) and relative efficiencies for ab initio simulations
on H3O+. AP is the result of calculation with the approximate potential. The

efficiency is relative to its value without using AP.

classical MC
(AP)

Classical MC
(without AP)

PIMC
(AP)

PIMC
(without AP)

<ROH> (Å) 0.9845 − 1.0007 −

<θ> (deg) 112.08 − 112.31 −

<V> (K) 928.2 932.9 5194.5 5183.5

σV (K) 1.1 3.8 4.7 13.7

efficiency 12.9 1.0 8.4 1.0

<K> (K) − − 5826.1 6035.8

σK (K) − − 28.4 93.4

efficency − − 10.8 1.0

Hybrid Monte Carlo and Hybrid Path Integral Monte Carlo Simulations

As a simple illustration of the method, we first show the results of ab initio
HMC calculations on an H2O molecule at T = 300 K. The target level of ab initio
method is set to MP2/cc-pVDZ. For simplicity, a single step was used for an
MD part in one MC cycle and a total of 50,000 MC steps were taken. Ab initio
MD calculations at a constant temperature of 300 K were also carried out for
comparison at the level of MP2/cc-pVDZ.

Figure 2(a) shows the acceptance ratio as a function of a time step by
employing various auxiliary potentials obtained from different (low-level) ab
initio methods and basis sets. It is seen that good acceptance ratio is obtained
even when the time step is increased to 1.5 ~ 2.0 fs. Figure 2(b) shows the
statistical errors of potential energies (σV) and OH bond lengths (σR) as a function
of acceptance ratio. A good convergence is achieved when the acceptance ratio is
around 40 ~ 60 %. The statistical errors are reduced in most cases in comparison
to ab initio MD simulations with Δt = 0.1 fs. Considering that the CPU time
decreases dramatically as a level of ab initio calculations is lowered for computing
gradients and that the efficiency of the method is proportional to the inverse of the
square of statistical errors, a significant computational saving is achieved. Note
that increasing a time step of ab initio MD calculations will certainly reduce the
statistical errors, but will induce large systematic errors due to finite step-size. In
ab initioMD, the total energy deviates from its initial value by ~ 1.2 kcal/mol for
the entire run when the time step is increased to 0.5 fs.
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Ab initio path integral hybrid Monte Carlo calculations (23) were also
performed for H2O and H3O+ molecules with 16 imaginary-time slices and
compared with the ab initio path integral MD simulations (24) (MP2/cc-pVDZ)
at a constant temperature of 300 K. The normal mode coordinates (25) were used
in all calculations and a total of 50,000 steps were taken for both path integral
HMC and path integral MD calculations. The results obtained are shown in
Table III and the performance is essentially similar to that obtained in ab initio
HMC simulations. Again, ab initio path integral HMC calculations with auxiliary
potentials offered a significant increase in computational efficiency.

Figure 2. (a) Acceptance ratio as a function of time step in ab initio HMC
simulation. MP2/cc-pVDZ//RHF/STO-3G indicates that the target distribution is
calculated at the level of MP2/cc-pVDZ and the energy gradients are obtained by
RHF/STO-3G for an MD update. (b) Statistical errors of potential energies (filled
symbols) and OH bond lengths (hollow symbols) as a function of acceptance
ratio. The errors are estimated by the block averages using 50 blocks in both
the ab initio HMC and MD simulations. The errors of ab initio MD calculations
are shown at zero, where the higher (lower) values correspond to simulations
with Δt = 0.2 fs (Δt = 0.1 fs). The average values of potential energy and OH
bond length taken from the run of minimum errors are <V> = 0.906 kcal/mol and

<R> = 0.9678 Å, respectively.
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Table III. Acceptance ratio and statistical errors of potential energies (σV
in units of kcal/mol) and OH bond lengths (σR in units of Å) for H2O and
H3O+ molecules in ab initio path integral HMC and MD simulations. The
average values of potential energy and OH bond length taken from the run
of minimum errors are <V> = 6.022 kcal/mol and <R> = 0.9811 Å for H2O,

and <V> = 10.013 kcal/mol and <R> = 1.0019 Å for H3O+.

H2O Δt % σV ×10-2 σR ×10-4

MP2/cc-pVDZ//MP2/cc-pVDZ 1.0
2.0

94.4
58.4

3.0
1.8

3.2
1.7

MP2/cc-pVDZ//RHF/cc-pVDZ 1.0
2.0

67.2
38.6

3.8
2.8

3.9
2.5

MP2/cc-pVDZ//RHF/STO-3G 1.0
2.0

57.0
29.5

4.3
3.0

4.3
3.2

path integral MD 0.1
0.2

−
−

12.5
4.6

5.9
4.5

H3O+

MP2/cc-pVDZ//MP2/cc-pVDZ 1.0
2.0

93.8
55.8

4.7
3.2

3.3
2.6

MP2/cc-pVDZ//RHF/cc-pVDZ 1.0
2.0

65.5
35.2

6.4
3.7

6.5
2.1

MP2/cc-pVDZ//RHF/STO-3G 1.0
2.0

73.1
43.0

5.6
3.6

4.6
2.7

path integral MD 0.1
0.2

−
−

15.8
9.5

5.7
4.5

IV. Concluding Remarks

In this chapter, we demonstrated that the efficiency of ab initio Monte Carlo
and ab initio path integral Monte Carlo calculation is enhanced significantly
using a suitable approximate potential. In the first part, the interpolated potential
energy obtained by the IMLS method was used as an approximate potential
and this scheme was applied to a water molecule and small protonated water
clusters. It was observed that the statistical errors were reduced by almost a
factor of three in most of the calculations presented in this work, which translates
into a reduction of the computational cost by an order of magnitude. One of
the attractive features of the method is that potential energy gradients are not
required in the calculations, which enables one to perform ab initio simulations
with highly correlated electronic structure methods such as CCSD(T), where the
evaluation of energy gradients is highly demanding or the module for analytical
gradients is not available. This will open the door for quantum simulations
with highly accurate ab initio potential. Another feature is that one can use any
form of the Monte Carlo sampling on the approximate potential. If the system
has the multiple minima separated by high energy barriers, it usually exhibits
a quasi-ergodic behavior. This problem can be circumvented by employing the
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advanced sampling method, such as J-walking (26), multicanonical sampling
(27), and parallel tempering method (4, 9, 10).

In the second part, we introduce a simple scheme in the context of hybrid
Monte Carlo and hybrid path integral Monte Carlo methods, where the energy
gradients are obtained from the computationally less expensive method, and
in this chapter, we employ a lower level ab initio method for updating system
configurations. Again, a significant increase in computational efficiency is
obtained. It is noted that the similarity of the target and auxiliary potentials is of
course a key factor which determines the efficiency of the method. One needs to
find a compromise between accuracy of an auxiliary potential and computational
cost for evaluating energy gradients. One of the notable advantages of the present
method is again that it does not require energy gradients calculations for target
(high-level) ab initio potentials.

Ab initio simulations have the strength in which one can have direct access
to the electronic property of molecules. The detailed understanding of these
properties, such as electronic charge or dipole moment, will provide deeper
insight into the microscopic structure of complex molecular systems.
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Chapter 4

Recent Results in the Exact Treatment of
Fermions at Zero and Finite Temperature

Norm M. Tubman,*,1,2 Jonathan L. DuBois,1 and Berni J. Alder1

1Lawrence Livermore National Laboratory, Livermore, CA 94550
2Department of Physics, University of Illinois, Urbana-Champaign,

Champaign, Illinois 61820
*E-mail: normantubman2015@u.northwestern.edu

We present release-node quantum Monte Carlo simulations of
the first row diatomic molecules and assess how accurately
their ground state energies can be obtained with current
computational resources. An explicit analysis of the
fermion-boson energy difference shows a strong dependence on
the nuclear charge, Z, which in turn determines the growth of
the variance of the release-node energy. We show that efficiency
gains from maximum entropy analysis are modest and that
extrapolation to the ground state is tractable only for the low
Z elements. For finite temperatures we discuss what can be
gleaned from the structure of permutation space for interacting
Fermi systems. We then demonstrate improved efficiency in
the exact path integral Monte Carlo treatment of liquid 3He by
using importance sampling to deemphasize the contribution of
long permutation cycles to the partition function.

Exact Methods at T=0

The fundamental goal in the field of ab initio simulations is to perform
electronic calculations to high accuracy or, even better, exactly. To simulate exact
methods an exponentially increasing amount of resources seems to be needed,
and thus in practice system sizes are often severely restricted. For example, two
well-known methods which are in principle exact are configuration interaction
and density functional theory. Here, the exponential computational complexity is
manifest in the formulation of configuration interaction (1), and is less obvious in

© 2012 American Chemical Society
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DFT where it arises as a problem in generating exact functionals (2). As a result,
practical uses of these algorithms do not yield exact results.

Release-node quantum Monte Carlo (RN-QMC) is a simulation method that
allows the eigenstates of a Hamiltonian to be sampled without any systematic
bias. The method is computationally expensive, however, and there are significant
limitations to what can feasibly be simulated. For quantum Monte Carlo (QMC)
calculations this has lead to the development of the popular but approximate
fixed-node diffusion Monte Carlo (FN-DMC). Despite the possibility of
improved accuracy, RN-QMC has only been used in a relatively limited number
of simulations. Nonetheless there have been some notable applications and
algorithmic developments.

One such application in which RN-QMC has been successful is the electron
gas (3) where hundreds of electrons have been simulated without convergence
problems. Convergence of a RN-QMC calculation is dependent on two decay
parameters given by τ1 = EF0, EB0, which determines the imaginary-time growth
of the variance, and τ2 = EF1, EB0, which determines the slowest imaginary-time
decay of the excited antisymmetric components relative to the fermion ground
state. The energies EF0, EB0, and EF1 are the fermion ground state, the boson
ground state and the first excited fermion state, respectively. Hamiltonians
in which the fermion-boson energy gap is small are well suited for RN-QMC
simulations, and the free electron gas is one such Hamiltonian. Nuclear charge
centers change the situation significantly such that relatively small atoms have
large fermion-boson energy gaps. The largest molecular RN-QMC calculations
to date have been performed on systems of around 10 electrons. However,
even in these cases, convergence is not always attained. In the first RN-QMC
calculations of molecules (4) several systems were simulated including H2O and
Li2 molecules. Later RN-QMC calculations included systems such as HF (5) ,
LiH (6), and H2+H (7) in which RN-QMC was able to reach higher accuracies as
a result of algorithmic modifications and increased computational resources. Our
goal is to consider the range of Hamiltonians that can be practically simulated
with RN-QMC with current computational power and modern algorithms. In
particular we have applied the method to the simulation of the first row dimers
with an accuracy goal of 10−3 [a.u.].

Released Node Quantum Monte Carlo

We can understand how RN-QMC achieves exact results by considering the
eigenfunction expansion of the imaginary time propagator

For ET=E0 the asymptotic, t→∞, limit of this operator gives the ground state
of the Hamiltonian. Technically a RN-QMC calculation is only converged in this
limit, however in practice we consider a RN-QMC calculation converged when
the slope of the release-node energy estimator is zero to within the statistical error.
This occurs when the standard error of our energy estimate at a given imaginary
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time is larger than the final energy difference to be decayed in the asymptotic
limit. As imaginary time increases with repeated application of the propagator in
equation (1), all excited states decay relative to the ground state. If a trial function,
ΨT(X), is used for importance sampling, the asymptotic distribution will be:

For a standard molecular Hamiltonian the ground state wave function is a
boson state and the fermion ground state is an excited state of the Hamiltonian.
Like all other excited states, it decays exponentially relative to the ground state
with application of the imaginary-time propagator. In certain cases we can
accurately measure the fermion ground state as it decays in imaginary time.
To determine the fermion ground state we can make a projection onto the
antisymmetric subspace during this decay process.

The antisymmetric projection is problematic for many Hamiltonians. The
release-node method is an example of a transient algorithm since the fermion
ground state is decaying exponentially in the limit of large imaginary time.
The release process is initiated with the introduction of a nodeless guide wave
function, ΨG(X), such that the walkers will equilibrate to the boson ground state.
During this process an antisymmetric trial wave function is used to project out the
antisymmetric signal. This causes a sign problem that manifests in the simulation
as exponentially growing noise in the release-node energy estimate.

The release-node energy can be calculated in a similar form to the FN-DMC

This estimator involves the sum of positive and negative terms, given by the
sign of the trial wave-function as seen in the term R = ΨT(X)/ΨG(X), which is the
reweighting factor for the guiding wave function. The weight of the ith walker is
calculated as

where the product is over all previous positions the walker has traversed. The
terms ELT and ELG are the local energies of the trial wave-function and the guiding
function respectively. The form of the local energy is given by ELG,T = Ψ−1G,T
HΨG,T. It can be shown that the variance of the transient energy E0RN is proportional
to a growing exponential with imaginary time (8, 9):

The release-node estimate for the energy will start decaying from the FN-
DMC energy, and eventually it will become flat, while the variance will continue to
grow as given in equation (4). The convergence rate from the FN-DMC energy to
the fermion ground state energy is different for each of the component eigenstates
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present in the fixed-node wave function. Ideally one would like a fast decay of the
fermion excited states, and a slow increase of the variance, i.e. (E1F −E0F )≫ (E0F
−E0B). In this ideal situation one can hope to sample E0F at a large imaginary time
with relatively small variance.

Fermion-Boson Gaps

The actual cost of a RN-QMC calculation is somewhat complicated by the
introduction of a trial wave function. A good trial wave function can significantly
decrease the contamination from the excited states, improving the convergence of
the release algorithm. In the limit that the trial wave function has the correct nodal
structure, FN-QMC gives the ground state energy and RN-QMC will be flat as a
function of imaginary time. Therefore generating high quality RN-QMC results
involves a balance of computing the best wave function possible and running
release-node for as much imaginary time as possible. Once a trial wave function
is optimized and put into a release-node calculation it is the growth of the variance
as a function of imaginary time that prevents a calculation from converging. It can
be seen from equation (5) that this is independent of the trial wave function.

With this behavior of the variance it is important that the excited states
decay away before the simulation is overwhelmed with noise. For the first-row
dimers, excluding Li2, we have estimated the amount of time needed to converge
our starting FN-DMC starting wave functions11 to an accuracy greater than
10−3 [a.u.] will be greater than 1 [a.u.]−1. A more accurate estimate of the
convergence times is dependent on the magnitude of the excited state components
of the FN-DMC wave function. Since the rate of growth of the variance is
determined by the fermion-boson energy gap, it is important to understand how
a Hamiltonian influences this energy gap. We recently made some calculations
of the fermion-boson energy differences for the first-row dimers shown in Table
I. The fermion energies are calculated from FN-DMC and the boson energies
are calculated with unrestricted Diffusion Monte Carlo (DMC) using nodeless
guiding wave functions. The boson energies are measured without any systematic
errors, while the fermion energies have systematic errors corresponding to errors
in the nodal surfaces. These systematic errors are estimated to be much smaller
than 1 [a.u.] and are much smaller than the scale of the fermion-boson energy
differences. The fermion-boson energy differences cover a range of about two
orders of magnitude across the first-row dimers. As previously mentioned, we
would like to simulate at least 1 [a.u.]−1 of imaginary time during the release
process, however the size of these fermion-boson gaps imply that the variance
will grow to intractable sizes for most of the first row dimers well before 1 [a.u.]−1
of simulation time.

In a recent RN-QMC study of the first row dimers (10), for a given set of trial
wave functions (11), we were able to achieve an accuracy of 10−4 [a.u.] for Li2,
however we were not able to achieved our desired accuracy of 10−3 for any of the
other first row dimers.
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Table I. Fermion-Boson energy gaps for the second row dimers. Boson
ground states are measured without any systematic errors with DMC, while
the fermion energies are taken as the estimated exact values from reference

(11). All energies are in Hartree.

Improving Release Node

While performing RN-QMC on better wave functions will always lead
to better results, there are several methods have been proposed to reduce the
computational cost of RN-QMC – some of which have the promise of removing
the exponential scaling of the algorithm. In this section we consider a few of
the more promising techniques which are imaginary time projections and walker
cancellation.

Projection techniques are based on sampling quantities during the release
process, other than the RN-QMC energy estimator, to project out the ground state
energy. It is known that some of these quantities, which are called imaginary time
correlators, have simple imaginary-time dependence of the eigenvalue spectrum.
After generating samples of a correlator of interest, we can fit the data and extract
out the ground-state energy. The benefit of such an approach is that a highly
accurate estimate of the ground-state energy might be possible with a limited
amount of imaginary-time data. The idea of fitting imaginary time data is a
general concept that has been applied very broadly in computational physics and
other fields (12). As far as applications of this for RN-QMC calculations, only the
LiH molecule and various model Hamiltonians have tested these ideas (6, 13, 14).

Projecting out the ground state energy with this imaginary time data is
equivalent to performing an inverse Laplace transform. The inverse Laplace
transform is known to be sensitive to noisy data and we used a Maximum Entropy
technique in our calculations to reduce our sensitivity to noise. We showed
significantly better results than our standard release-node calculations (10), as
we were able to generate ground state energies for Li2, Be2, and B2 with this
approach. However, due to the nature of the inverse Laplace transform, our results
were too noisy to properly project out ground state energies for the rest of the first
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row dimers. Our analysis suggests that these projection techniques that rely on
inverse Laplace techniques, although more efficient that standard RN-QMC, do
not get around the exponential scaling of the problem and practically can not be
applied to larger systems.

Cancellation techniques provide an alternative route to improving on the
efficiency of the RN-QMC method. It has been demonstrated that, by allowing
walkers of opposite sign to annihilate each other, cancellation can slow down
the growth rate of the error. To date, this approach has been applied to a number
of problems with varying success (15). In addition, cancellation has also been
applied in molecular calculations for linear H-H-H and H2 (16). A recent study
demonstrating promising behavior of the technique in high dimensional systems
is worth noting (17).

Exact Methods at Finite Temperature
Path integral quantum Monte Carlo (PIMC) methods have provided

significant insights into the low temperature properties of bosonic quantum
liquids and solids (see e.g. (18)). And while the approach can, in principle, be
applied to simulate the full many-body partition function for fermions as well,
a sign problem occurs for temperatures below the T → ∞ limit. As a result,
enforcement of Fermi symmetry for all but the smallest finite temperature systems
has in practice required the invocation of an uncontrolled approximation in the
form of a restriction on the phase space of the path integral in order to prevent
sign changes (19, 20). In this section we discuss what is known about the nature
of the sign problem at finite T and describe an approach for reducing its effects.

PIMC methods work by sampling a product of approximate high temperature
(short imaginary time) density matrices (Green functions) exp[-βĤ] = exp[-(β/
M)Ĥ]M just as in ground state QMC methods like DMC. The differences between
the methods arise mainly from the fact that sampling of a fixed finite temperature
ensemble imposes a periodicity on the permuted coordinates in β, i.e.

where the sum is over the symmetric group and P[R] represents a permutation
of the many-body coordinate R. In ground state methods this periodicity formally
only exists atRβ→∞, and antisymmetry may be imposed by an explicit projection at
each time slice as described above. In canonical PIMC, however, the β periodicity
of P[R] requires that permutations be sampled explicitly and so configuration
space typically consists of complete paths Y={R,R1,R2,…,RM-1} whereRM-1must
be connected to P[R] by the high temperature density matrix exp[-(β/M)Ĥ]. The
sum over permutations in e.q. (6) is clearly the source of the sign problem in finite
temperature PIMC. However, the explicit representation of permutations as linked
polymers and in particular the connection between the length of a permutation
(i.e. the number of particles participating in a single closed loop) and the kinetic
energy leads to some interesting and useful observations about the structure of
permutation space and, consequently, the finite T sign problem as well.
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The Structure of Permutation Space

While there are N! possible permutations of N particles, the symmetry group
can be further organized into subsets of topologically equivalent diagrams (21,
22). Figure 1 shows representative members from the five equivalences classes of
the Symmetric group for four particles, S4. It is easy to see that if each of these
classes was equally probable, the sum over all of them would indeed be zero and,
as a result, the antisymmetric ‘signal’ embedded in the partition function would
disappear. At any finite temperature, however, each equivalent permutation sector
will have a different mean energy and therefore a different probability and the
total contribution to the antisymmetrized partition function will be nonzero. For
this reason one might be so bold as to say that at finite temperature there is not a
sign problem but merely a “sign annoyance.”

In practice, while the number of equivalence classes grows roughly as N7/

2 (23) – much more slowly than the N! number of enumerated permutations --
the contribution to the partition function of neighboring high order sectors (i.e.
those consisting of long permutation cycles) becomes nearly identical at even
moderately low temperatures. As a result, if the partition function is sampled
directly, most of the simulation time will be spent generating configurations that
will ultimately cancel each other out.

In addition to recognizing the relative importance of low order permutation
sectors, it is instructive to examine the connection between the order of a
permutation sector and the mean kinetic energy. Intuitively, long permutations
impose a weaker constraint on the paths of participating particles since a path
consisting of ν particles only need return to its starting point after imaginary time
νβ. As a consequence, in an isotropic system longer permutation cycles will, on
average, have lower kinetic energy than short ones. For the noninteracting gas
this connection is especially clear as the contribution to the partition function
from ν permuting particles is equivalent to the single particle partition function
at a lower temperture Z1(ν/T). As a result, the mean energy of paths in each
permutation sector is monotonically decreasing with the order of the sector. For
fixed particle number, the virial theorem tells us that this trend must hold for
systems with pairwise interactions as well.

Figure 1. Diagramatic representation of the equivalence classes of the symmetric
group for 4 particles, S4, the number of elements in each class (top), and the sign
of the contribution of members of each class to the partition function (bottom).
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Motivated by these observations we have recently explored the possibility
of improving the efficiency of PIMC simulations applied to Fermi systems by
using importance sampling to limit the time spent evaluating nearly degenerate
permutation classes. The approach is relatively straightforward. Starting with
the recently developed continuous-space worm algorithm (24, 25) to efficiently
sample permutation space, we employ standard importance sampling techniques
to modify the probability of moves that change the permutation sector. Sampling
of long permutation cycles is penalized by reducing the probability of attempting
moves that will extend the length of a permutation while the acceptance probability
of such moves is increased to maintain detailed balance. The net result is that low
order permutation sectors (those with only a few short permutation cycles) are
sampled a great deal and high orders very rarely. In addition, the energy of each
equivalence class is binned separately so that the final expectation value for the
energy is taken by summing over the mean energy in each class multiplied by the
probability of being in the class

Finally, using the knowledge that both the mean energy per sector Eg and the
probability of occupying each sector ng are monotonically decreasing functions, an
improved estimate of the mean energy is obtained by fitting Eg and ng to smoothly
decaying functions E[g] and n[g]. The σ̃E,n in eq (7) represent the statistical error
in the energy and probability density respectively in each sector while σ̃E,n are
the error resulting from fitting energies and probability density over all sectors
using a model. This step can in principle introduce a systematic error but it is
not strictly necessary. We also note that since sampling is performed in the grand
canonical ensemble, the chemical potential, μ, is a parameter. In the results for 3He
below we have fixed μ so as to match the known experimental density. A more
detailed account of this “exchange truncated grand canonical PIMC method” will
be presented elsewhere (26).

Results of a simulation of N=66 3He particles using the Aziz potential (27) and
the approach outlined above are shown in Figure 2. Our results for the temperature
dependence of the energy are in very good agreement with experiment. In contrast,
it can be seen that the restricted path approach (19) suffers from a comparatively
large systematic error. Also of note is that we are able to obtain results well below
the Fermi temperature of 3He despite the fact that, in principle, exact treatment
of the partition function requires sampling of 66! ~ 1092 permutations and ~6000
equivalent permutation groups.
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Figure 2. Results of Exchange Truncated Grand Canonical PIMC applied
to liquid 3He. Our results (solid circles) agree well with experimental data

(dashed line) down to temperatures well below the 3He Fermi temperature. The
improvement over the approximate restricted path integral method (+ symbols),

a 25% difference in energy per particle at 0.5 K, is evident.

Conclusion

We have applied the RN-QMC method to the first row dimmers in an attempt
to quantify the level of accuracy obtainable for all-electron chemical systems
with this approach using current resources. Our results indicate that release node
projections can be converged for up to ~ 10 electrons with an accuracy of at least
10-3. We find that while maximum entropy analysis of the imaginary time decay
significantly improves estimates of the ground state energy, it does directly not
solve the problem of the poor scaling of the computational cost of RN-QMC
for a fixed error bar with Z. For finite temperatures we reviewed some of what
is known about the nature of the sign problem and presented results of a new
scheme for taking advantage of the structure in permutation space by neglecting
contributions from long permutation cycles. An open area for future research in
this area involves the generalization of our approach to inhomogeneous systems.
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Chapter 5

Quantum Monte Carlo Facing the
Hartree-Fock Symmetry Dilemma: The Case of

Hydrogen Rings

Peter Reinhardt,*,1 Julien Toulouse,1 Roland Assaraf,1 C. J. Umrigar,2
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63177 Aubière, France
*E-mail: Peter.Reinhardt@upmc.fr. Fax: +33 1 44 27 41 17.

When using Hartree-Fock (HF) trial wave functions in
quantum Monte Carlo calculations, one faces, in case of HF
instabilities, the HF symmetry dilemma in choosing between
the symmetry-adapted solution of higher HF energy and
symmetry-broken solutions of lower HF energies. In this work,
we have examined the HF symmetry dilemma in hydrogen
rings which present singlet instabilities for sufficiently large
rings. We have found that the symmetry-adapted HF wave
function gives a lower energy both in variational Monte Carlo
and in fixed-node diffusion Monte Carlo. This indicates that the
symmetry-adapted wave function has more accurate nodes than
the symmetry-broken wave functions, and thus suggests that
spatial symmetry is an important criterion for selecting good
trial wave functions.

© 2012 American Chemical Society
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I. Introduction

It is well known that the symmetry-adapted solution of the nonlinear Hartree-
Fock (HF) equations of an electronic system is sometimes unstable. An unstable
solution corresponds to a saddle point of the energy as a function of the orbital
parameters, and breaking of space and/or spin symmetries of the wave function
then necessarily leads to one or several lower-energy HF solutions. The stability
conditions of the HF equations were first formulated by Thouless (1), and the
different instabilities were first categorized by Čiček and Paldus (2–7). For closed-
shell systems, onemay encounter “singlet instabilities” when only space symmetry
is broken, and “triplet (or nonsinglet) instabilities” when spin symmetry is also
broken. There is thus a symmetry dilemma (8) in choosing between the symmetry-
adapted wave function of higher HF energy and a symmetry-broken wave function
of lowerHF energy, in particular as a reference for a post-Hartree-Fock calculation.

A particularly spectacular example is provided by closed-shell hydrogen
rings H4n+2 with equal bond lengths (9) (see, also, ref. (10)). The metallic
symmetry-adapted HF solution exhibits singlet instabilities for sufficiently large
numbers of hydrogen atoms, and one can obtain insulating symmetry-broken HF
solutions with orbitals localizing on either the atoms or the bonds. However, both
Møller-Plesset perturbation theory or linearized coupled cluster doubles theory
(also called CEPA--0 or DMBPT–∞) give a lower total energy when starting from
the symmetry-adapted solution than when starting from the symmetry-broken
solutions, which casts doubts on the physical significance of the symmetry-broken
solutions. Of course, the symmetry dilemma would be removed with a full
configuration-interaction calculation which must give one unique solution,
independent of the orbitals used.

Quantum Monte Carlo (QMC) approaches are alternatives to the traditional
quantum chemistry methods (11–13). The two most commonly used variants
are variational Monte Carlo (VMC) which simply evaluates the energy of a
flexible trial wave function by stochastic sampling, and diffusion Monte Carlo
(DMC) which improves upon VMC by projecting the trial wave function onto
the exact ground state, while keeping the nodes of the wave function fixed. The
most common form of the trial wave function is a Jastrow factor multiplied by
a fixed HF determinant. If a system exhibits HF instabilities, then QMC also
faces the symmetry dilemma in choosing between different HF wave functions.
Indeed, different HF wave functions necessarily lead to different energies in
VMC, but also in DMC since the nodes of these HF wave functions are generally
different. This symmetry dilemma in DMC is only due to the fixed-node
approximation, since without this approximation DMC would give one unique
solution, independent of the orbitals used.

In this work, we study the impact of the HF symmetry dilemma for QMC in
hydrogen rings H4n+2. In Sec. II, we recall the HF symmetry-breaking problem
in these systems, and discuss the effect of using a Slater basis versus a Gaussian
basis. In Sec. III, we explain the QMC methodology and report our VMC and
DMC results. Our conclusions are summarized in Sec. IV.
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II. Hartree-Fock Symmetry Breaking

In previous studies (9, 14), the electronic structure of periodic rings of 4n+2
evenly spaced hydrogen atoms (with a fixed distance of rH–H = 0.74747Å) has been
investigated. The number of hydrogen atoms is restricted to 4n+2 in order to obtain
a possible closed-shell single-determinant solution with 2n+1 occupied orbitals.
The symmetry-adapted HF wave function has a metallic character and can be
expressed with either delocalized canonical orbitals or localized Wannier orbitals.
The canonical orbitals are doubly degenerate, except for the lowest-energy one,
and in a minimal basis the orbital coefficients are fixed by the cyclic symmetry.
Besides the symmetry-adapted (SA) solution, two different symmetry-broken HF
solutions of lower energy can be obtained beyond critical ring sizes, when using
unit cells of 2 hydrogen atoms. One solution corresponds to orbitals localized on
hydrogen atoms and is referred to as the symmetry-broken atom-centered (SB-AC)
solution, while the other corresponds to orbitals localized on bonds and is referred
to as the symmetry-broken bond-centered (SB-BC) solution. The SB-BC solution
is the lowest one in energy and corresponds to a true minimum. The three solutions
can be schematically described as ···H···H···, ···H+···H–···, and ···H–H···. In each
case, the symmetry breaking is accompanied by an opening of an energy gap
between occupied and virtual orbitals, and orbitals decay much more rapidly than
for the symmetry-adapted solution, in agreement with the theoretical result of
Kohn (15).

In order to distinguish the three different wave functions, one may look at the
one-particle density matrix P

This equation contains the expansion coefficients cαi of the occupied

molecular orbitals

expanded in a minimal set of atom-centered basis functions, i.e. one single basis

function per hydrogen atom. As depicted in Figure 1, for the SA solution,
we see equal elements on the diagonal and the sub-diagonals of the density matrix.
For the SB-AC solution, an alternation of element values on the diagonal of the
density matrix is obtained, but equal elements on the first sub-diagonal, and for
the SB-BC solution we have equality of the diagonal elements and alternation on
the first sub-diagonal.
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Figure 1. Structure of the one-particle density matrix for the HF
symmetry-adapted (SA) and symmetry-broken (SB-AC and SB-BC) solutions.

In ref. (9), a minimal Gaussian basis set (five s Gaussian functions contracted
to one single basis function for each hydrogen atom) was used. However,
Gaussian basis functions are not appropriate for all-electron QMC calculations.
They give large statistical fluctuations due to their incorrect vanishing gradient
at the nuclear positions. It is thus much preferable to use Slater basis functions
which correctly have a non-zero gradient on the nuclei and an exponential decay
at large distance. In this work, we use a minimal Slater basis set (one 1s Slater
function on each hydrogen atom) with an exponent of 1.17, which is smaller
than the optimal exponent of 1.24 for an isolated H2 molecule as we aim at
describing systems with diffuse electron distributions and still keep a single fixed
exponent. Spin-restricted HF (and MP2) calculations were performed with an
experimental code for ring systems, employed already for the previous studies
(16). The necessary integrals over Slater functions have been calculated with the
program SMILES (17). In order to obtain the symmetry-broken HF solutions, we
start from a set of localized Wannier orbitals describing either an ionic situation
or an explicit bond in the two-atom unit cell, and use an iterative configuration
interaction procedure using singly excited determinants (18, 19) instead of
diagonalizing a Fock operator to avoid complete delocalization of the molecular
orbitals.

Table I reports the HF energy differences between the symmetry-broken
solutions and the symmetry-adapted one for the Gaussian basis set of ref. (9) and
the Slater basis set of the present study. With the Gaussian basis set, the departure
of the SB-BC and SB-AC solutions from the SA solution occurs for H46 and H54
rings, respectively. With the Slater basis set, the onset of symmetry breaking takes
place for larger rings, i.e. for H50 and H62 for SB-BC and SB-AC, respectively.
In addition, for a fixed ring size, the lowering in energy of the symmetry-broken
solutions is smaller with the Slater basis set. This is an indication that the Slater
basis is better than the Gaussian basis, since the amount of symmetry breaking
is usually larger for poorer wave functions. The HF total energies are indeed
lower with the Slater basis, for example for H42, the (SA) energy is –0.950252
hartree with the Gaussian basis and –0.997003 hartree with the Slater basis. As
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an additional verification of the usefulness of Slater functions, we can look at
Kato’s cusp condition (20) at the nuclear positions :

where and are the density and the spherical average of density
gradient at the nuclear positions, and Z is the nuclear charge. For example, for the
H86 ring, we find 1.009 for SA, 1.012 for SB-BC, and 1.034 and 0.980 for SB-AC,
close to the ideal value of Z = 1.

Table I. HF energy differences of H4n+2 rings, per H2 cell in mhartree,
between the symmetry-broken solutions (SB-AC and SB-BC) and the
symmetry-adapted (SA) one, for the Gaussian and Slater basis sets

Gaussian basis Slater basis

4n+2 ESB-AC – ESA ESB-BC – ESA ESB-AC – ESA ESB-BC – ESA

42 — — — —

46 — −0.00258 — —

50 — −0.03555 — −0.00199

54 −0.00115 −0.08933 — −0.02739

58 −0.01900 −0.15116 — −0.06961

62 −0.04980 −0.21440 −0.00080 −0.11914

66 −0.08678 −0.27565 −0.01223 −0.17074

III. Quantum Monte Carlo Study
QMC methods are considered as producing benchmarks in quantum

chemistry, approaching the electronic-structure problem through a drastically
different way than common wave-function-based methods or density-functional
theory. As QMC methods often rely of a HF trial wave function, it is interesting
to check their sensitivity to HF symmetry breaking. We start by giving a brief
overview of the VMC and DMC methods employed in this work.

A. Brief Overview of VMC and DMC

We consider Jastrow-Slater trial wave function of the form

where R designates the electron coordinates, is a HF determinant and
is a Jastrow correlation factor depending explicitly on the

electron-electron distances rij and the nuclei-electron distances rIj . In VMC, one
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calculates the energy as the expectation value of the Hamiltonian H over the wave
function by stochastic sampling

is the local energy, and the M points are sampled from
by aMetropolis algorithm. In DMC, one improves over the distribution
by generating another distribution: ), obtained by evolving the

importance-sampling Schrödinger equation in imaginary time

This equation resembles an ordinary diffusion equation with diffusion, drift
and source terms on the right-hand side. This diffusion process is simulated
stochastically with a population of walkers representing the distribution ) .
The trial energy ET is adjusted in the course of the calculation in order to maintain
a stable population of walkers. After some iterations the stationary distribution is
obtained from where is the fixed-node
(FN) wave function, i.e. the best approximation to the ground-state wave function
having the same nodes as the trial wave function. In practice, this fixed-node
approximation is automatically enforced by using as a positive
probability density, meaning that must necessarily be of the same sign
as . The DMC energy is then calculated as the statistical average of the local
energy of the trial wave function over the mixed distribution: .

The nodes of the wave function are the locations of the points R where
the wave function vanishes. For a system of N electrons in 3 dimensions, they
form (3N-1)–dimensional hypersurfaces. A subset of these nodes is given by
the antisymmetry property of the fermionic wave function with respect to the
exchange of two electrons, which implies that the wave function vanishes when
two same-spin electrons are at the same point in space. However, these “Pauli” (or
exchange) nodes form only (3N-3)–dimensional hypersurfaces, and are therefore
far from sufficient to determine the full nodal hypersurfaces (see, e.g., ref. (21)
for examples on simple atomic systems). Likewise, space symmetry is generally
far from sufficient to specify the nodes (22). For a given system, different HF
wave functions (of different space symmetries) share the same Pauli nodes, but
otherwise generally have very different nodal hypersurfaces, and thus lead to
different fixed-node errors on DMC energies.
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B. Computational Details

The QMC calculations have been performed with the program CHAMP (23)
on a massively parallel IBM BlueGene architecture using up to 4096 processors.
The trial wave functions are constructed by multiplying the previously obtained
HF wave functions by a Jastrow factor consisting of the exponential of the sum
of electron-nucleus, electron-electron and possibly electron-electron-nucleus
terms, written as systematic polynomial and Padé expansions (24) (see also refs.
(25, 26)). Some Jastrow parameters are fixed by imposing the electron-electron
cusp condition, and the others are optimized with the linear energy minimization
method in VMC (27–29), using an accelerated Metropolis algorithm (30, 31).
The orbital and basis exponent parameters are kept fixed in this work. Once the
trial wave functions have been optimized, we perform DMC calculations within
the short-time and fixed-node approximations (see, e.g., refs. (32–36)). We use an
imaginary time step of Δτ = 0.01 hartree-1 in an efficient DMC algorithm having
very small time-step errors (37). We use a target population of 100 walkers per
processor, and estimate statistical uncertainties with blocks of 1000 iterations, for
an energy autocorrelation time of about 50 iterations. The statistical uncertainty
on the average energy per H2 cell is decreased to smaller than 2 x 10-5 hartree.

The computational cost of the VMC calculations grows with the third power
of the number of hydrogen atoms when optimizing all the two-body and three-
body terms in the Jastrow factor. When restricting the Jastrow factor to the two-
body terms only, the computational cost scales quadratically with the number of
hydrogen atoms, suggesting that it is the evaluation of the Jastrow factor which
dominates the computational cost and not the evaluation of the Slater determinant.
The large reduction of computational cost achieved by removing the three-body
terms comes without too much a loss on the VMC energy, and in principle no loss
at all on the DMC energy. For example, for the H26 ring system, we find a VMC
energy of –13.8894 ± 0.0005 hartree with the three-body term, and –13.8430 ±
0.0005 hartree without the three-body term. The computational effort is about 20
times more time consuming in the former case. We thus use a two-body Jastrow
only.

As the variance V of the local energy of a ring of n H2 molecules is
approximately n times the variance V for one H2 molecule, the statistical
uncertainty on the energy grows with the square root of n

Here M is the number of Monte Carlo iterations. Therefore, the statistical
uncertainty on the energy per H2 cell decreases as , and thus calculations
aiming at a given statistical uncertainty on this quantity demand fewer steps for
increasing ring sizes.
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C. Results

Figure 2 reports the VMC total energies of the hydrogen rings, per H2 cell,
for the three HF solutions from 46 to 102 hydrogen atoms. Like in Møller-Plesset
perturbation theory or linearized coupled cluster doubles theory, the energy
ordering of the three solutions are reversed in comparison to HF, the SA wave
function giving now the lowest total energy and the SB-BC solution giving the
highest one. For the case of H86, we show in Table II the QMC total energies
and energy differences of the symmetry-adapted and symmetry-broken solutions.
For comparison, we also report MP2 energies calculated with the same Slater
basis set. The VMC total energy per H2 cell lie about 50 mhartree below the MP2
energies, and the energy splittings between the different solutions are also smaller
than those in MP2, which shows the Jastrow factor better describes electron
correlation.

Figure 3 reports the corresponding DMC results. The energy ordering is the
same as in VMC and MP2, the SA wave function giving the lowest DMC total
energy, and thus the smallest fixed-node error. As shown in Table II, the energy
splittings between the different solutions are much smaller in DMC. This indicates
that DMC is less sensitive to symmetry breaking than other correlation methods.
It is an interesting feature for cases where symmetry breaking cannot be avoided.

Figure 2. VMC total energies of H4n+2 rings, per H2 cell in mhartree, for the
symmetry-adapted (SA) and the two symmetry-broken (SB-AC and SB-BC) HF
solutions from 46 to 102 hydrogen atoms. The statistical uncertainty is about the

size of the point.
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Table II. Total energy and energy differences, per H2 cell in mhartree, of the
symmetry-adapted (SA) and the symmetry-broken (SB-AC and SB-BC) HF

solutions, for the H86 ring, with the Slater basis set

Method E(SA) E(SB-AC)-E(SA) E(SB-BC)-E(SA)

HF −996.15 −0.14 −0.39

MP2 −1016.22 1.37 1.55

VMC −1063.24 0.93 1.36

DMC −1077.57 0.31 0.70

Figure 3. DMC total energies of H4n+2 rings, per H2 cell in mhartree, for the
symmetry-adapted (SA) and the two symmetry-broken (SB-AC and SB-BC) HF
solutions from 46 to 102 hydrogen atoms. The statistical uncertainty is about the

size of the point.

IV. Conclusion
When HF trial wave functions are used in QMC calculations, in case of

HF instabilities QMC faces the HF symmetry dilemma in choosing between the
symmetry-adapted solution of higher HF energy and symmetry-broken solutions
of lower HF energies. In this work, we have examined the HF symmetry dilemma
in hydrogen rings H4n+2 which present HF singlet instabilities for sufficiently
large ring sizes. We have shown that using a Slater basis set, instead of a
Gaussian basis set, delays the onset of HF symmetry breaking until larger rings
and slightly reduces the energy splittings between the symmetry-adapted and
symmetry-broken wave functions. When using these different HF wave functions
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in VMC and DMC, we have found that the energy ordering is reversed, the
symmetry-adapted wave function always giving the lowest energy. This confirms
previous post-Hartree-Fock studies in showing that these symmetry-broken
solutions are bad starting wave functions for correlated calculations. The fact
that the symmetry-adapted wave function gives the lowest DMC energy indicates
that this wave function has more accurate nodes than the symmetry-broken wave
functions. The present experience thus suggests that spatial symmetry is an
important criterion for selecting good trial wave functions.

Acknowledgments

This work has been financed mainly through the DEISA network, project
STOP-Qalm. All QMC calculations have been performed on the IBM Bluegene
machines in Jülich and Munich (Germany). The authors thank the staff of IDRIS
(Orsay, France) for technical assistance to install, test and run the QMC program
CHAMP on these machines. We also acknowledge the possibility of using the
Slater integral code SMILES (Madrid, Spain) for preparing the HF starting wave
functions. Discussions with P. Gori-Giorgi (Amsterdam, Netherlands) and J.-P.
Malrieu (Toulouse, France) were very helpful for the project.

References

1. Thouless, D. J. The Quantum Mechanics of Many Body Systems; Academic
Press: New York, 1961.

2. Čiček, J.; Paldus, J. J. Chem. Phys. 1967, 47, 3976.
3. Paldus, J.; Čiček, J. J. Chem. Phys. 1970, 52, 2919.
4. Čiček, J.; Paldus, J. J. Chem. Phys. 1970, 53, 821.
5. Paldus, J.; Čiček, J. J. Chem. Phys. 1971, 54, 2293.
6. Čiček, J.; Paldus, J. Phys. Rev. A 1971, 3, 525.
7. Paldus, J.; Čiček, J. Phys. Rev. A 1970, 2, 2268.
8. Löwdin, P.-O. Rev. Mod. Phys. 1963, 35, 496.
9. Reinhardt, P.; Malrieu, J. P. J. Chem. Phys. 1999, 110, 775.
10. Bénard, M.; Paldus, J. J. Chem. Phys. 1980, 72, 6546.
11. Hammond, B. L.; W. A. Lester, J.; Reynolds, P. J. Monte Carlo Methods in

Ab Initio Quantum Chemistry; World Scientific: Singapore, 1994.
12. Nightingale, M. P., Umrigar, C. J., Eds.; Quantum Monte Carlo Methods in

Physics and Chemistry; NATO ASI Ser. C 525; Kluwer: Dordrecht, 1999.
13. Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Rev. Mod. Phys.

2001, 73, 33.
14. Reinhardt, P.; Malrieu, J. P. J. Chem. Phys. 1998, 109, 7632.
15. Kohn, W. Chem. Phys. Lett. 1993, 208, 167.
16. Reinhardt, P. Different Programs To Perform Ab-Initio Calculations within

Highly Localized Orbitals; Toulouse-Dresden-Paris, 1998, unpublished.
17. Fernández Rico, J.; López, R.; Aguado, A.; Ema, I.; Ramírez, G. Int. J.

Quantum Chem. 2001, 81, 148.
18. Daudey, J.-P. Chem. Phys. Lett. 1974, 24, 574.

62

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
M

ay
 2

7,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
00

5

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



19. Reinhardt, P.; Malrieu, J.-P.; Povill, A.; Rubio, J. Int. J. Quantum Chem.
1997, 70, 167.

20. Kato, T. Commun. Pure Appl. Math. 1957, 10, 151.
21. Bressanini, D.; Ceperley, D. M.; Reynolds, P. In Recent Advances in

Quantum Monte Carlo Methods, II; Lester, W. A., Rothstein, S. M., Tanaka,
S., Eds.; World Scientific: Hackensack, NJ, 2001; p 3.

22. Bressanini, D.; Morosi, G.; Tarasco, S. J. Chem. Phys. 2005, 123, 204109.
23. Umrigar, C. J.; Filippi, C.; Toulouse, J. CHAMP (Cornell-Holland Ab-initio

Materials Package). http://pages.physics.cornell.edu/~cyrus/champ.html.
24. Umrigar, C. J., unpublished.
25. Filippi, C.; Umrigar, C. J. J. Chem. Phys. 1996, 105, 213.
26. Güçlü, A. D.; Jeon, G. S.; Umrigar, C. J.; Jain, J. K. Phys. Rev. B 2005, 72,

205327.
27. Toulouse, J.; Umrigar, C. J. J. Chem. Phys. 2007, 126, 084102.
28. Umrigar, C. J.; Toulouse, J.; Filippi, C.; Sorella, S.; Hennig, R. G. Phys. Rev.

Lett. 2007, 98, 110201.
29. Toulouse, J.; Umrigar, C. J. J. Chem. Phys. 2008, 128, 174101.
30. Umrigar, C. J. Phys. Rev. Lett. 1993, 71, 408.
31. Umrigar, C. J. In Quantum Monte Carlo Methods in Physics and Chemistry;

Nightingale, M. P., Umrigar, C. J., Eds.; NATO ASI Ser. C 525; Kluwer:
Dordrecht, 1999; p 129.

32. Grimm, R.; Storer, R. G. J. Comput. Phys. 1971, 7, 134.
33. Anderson, J. B. J. Chem. Phys. 1975, 63, 1499.
34. Anderson, J. B. J. Chem. Phys. 1976, 65, 4121.
35. Reynolds, P. J.; Ceperley, D. M.; Alder, B. J.; Lester, W. A. J. Chem. Phys.

1982, 77, 5593.
36. Moskowitz, J. W.; Schmidt, K. E.; Lee, M. A.; Kalos, M. H. J. Chem. Phys.

1982, 77, 349.
37. Umrigar, C. J.; Nightingale, M. P.; Runge, K. J. J. Chem. Phys. 1993, 99,

2865.

63

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
M

ay
 2

7,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
00

5

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



Chapter 6

Single Electron Densities from Quantum Monte
Carlo Simulations

Arne Lüchow* and René Petz

Institute of Physical Chemistry, RWTH Aachen University,
52056 Aachen, Germany

*E-mail: luechow@rwth-aachen.de

In this contribution, quantum Monte Carlo is used to construct
strongly localized single electron densities from all-electron
correlated wavefunctions. They allow interpretations in terms
of core, bond or lone pair electrons. It is demonstrated that
single electron densities can be obtained efficiently within the
variational quantum Monte Carlo (VMC) method. Results for
LiH, ethane, ethene, and water are shown.

Introduction

Quantum Monte Carlo is a technique that allows both accurate and favorably
scaling electron structure calculations. While other electron structure methods
such as the density functional theory employ an effective one-electronHamiltonian
the variational and the diffusion quantum Monte Carlo method (VMC and DMC)
are based on the full-dimensional electronic wavefunction ψ. More precisely,
VMC and DMC construct samples of the distributions |ψ|2 and ψψ0, respectively,
by means of Monte Carlo methods where ψ denotes an approximate wavefunction
or trial function and ψ the exact ground state wavefunction. The efficiency of these
methods is due to importance sampling, i.e. many sample points describe regions
with large values of |ψ|2 or ψψ0 while few points are used for small values. The
distributions are usually built to calculate the total energy as expectation of the
local energy EL = Hψ/ψ. Sometimes other quantum mechanical expectations such
as multipole moments are calculated similarly. Details to these methods are found
in other chapters of this book, or in recent review articles (1, 2).

The full-dimensional wavefunction contains of coursemuchmore information
than that obtained from a few expectation values. In fact, it contains all information

© 2012 American Chemical Society
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about the chemistry and physics of a molecule or a molecular system. Therefore, is
should be possible to extract information about the delocalization or localization of
electrons, about where the electrons or electron pairs can be found in the molecule,
and about exchange or effects due to the antisymmetry from the wavefunction.
Finally, it should be possible to extract transferable chemical entities such as bond
electron pairs and lone pairs, or even transferable groups such as a methyl group
from the wavefunction.

Many methods for a chemically oriented analysis of wavefunctions and
densities that are based on DFT or other ab initio methods are well known and will
not be discussed here, but only a few quantum Monte Carlo (QMC) techniques
have been presented up to date. Most notably are the electron pair localization
method (EPLF) by Scemama et. al. (3, 4) and the density analysis by Alexander
and Coldwell (5). The compact analytical form of the many-body wavefunction
ψ employed in QMC allows in addition for the determination of the local maxima
of |ψ|2. These represent the most likely arrangements of all electrons and contain
therefore considerable information about many-body properties of the system.

In a very recent publication, the current authors have presented a new method
for analyzing |ψ|2 which is given as a sample (6). It is demonstrated that it is
possible to extract strongly localized single-electron densities representing bonds,
cores, and lone pairs without use of atomic or molecular orbitals. The main idea
is the assignment of the electrons in the |ψ|2 sample to reference positions. In
this contribution, we briefly review the method and elaborate on details of the
assignment procedure. In addition, we suggest an alternative choice of reference
positions.

Single Electron Densities

The variational quantum Monte Carlo method can construct efficiently large
samples of |ψ|2 which is observable and describes the probability density of all
electrons at once. Such samples can be obtained experimentally (at least in
principle) by determining repeatedly all electron positions at once. This does not
violate the Heisenberg uncertainty principle as long as no momentum information
is available. In the quantum simulation of this experiment, the spin state (up
or down) is available for each electron as well. Contrary to measurements or
calculations of spin densities it is possible to extract information about electron
distances and angles.

Chemists have rationalized very successfully the electronic structure of
molecules since the advent of the ingenious “Lewis” electron pair by G. N. Lewis
in terms of bond electron pairs, lone pairs, core electrons and so on. Quantum
mechanics does not allow to distinguish between “lone pair” and “core” electrons,
but chemists do not maintain that there are distinct lone pair electrons, only that
there are two electrons in a “lone pair” region. The Loge theory of R. Daudel
is an example for the definition of disjunct domains that are constructed such as
to contain e.g. two electrons in the mean (7). The availability of |ψ|2 samples
enables the opposite approach: the two lone pair, core, bond electrons, and
so on are identified in each electron arrangement of the sample and collected
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to single electron densities, one density for spin up and one for spin down
electrons. It should be noted that such single electron densities are related to
squared localized molecular orbitals, but are defined for arbitrary wavefunctions,
including multireference wavefunctions.

In many cases, it is obvious which electrons are core, which are bond
electrons, but in other cases the assignment is not obvious. For an automatic
construction of single electron densities a unique algorithm for the assignment is
required. It is desirable to devise an algorithm that does not rely on “chemical
knowledge” but on properties of the electron distribution itself.

The current authors have suggested to assign electrons to single electron
densities based on a reference electron arrangement. Each electron has to be
assigned uniquely to one electron of the reference. The reference can be the most
probable electron arrangement, i.e. the maximum of |ψ|2 (6). The relation of this
maximum to the chemical structure has been discussed recently by Scemama et
al. (8). Here we suggest an alternative reference, iterated centers of charge of the
single electron densities. The construction of this reference is discussed below.
First, the efficient assignment of the electrons of an electron arrangement during a
VMC calculation is analyzed. In the following section, the new reference electron
arrangement is discussed in detail.

The Assignment of Electrons

In VMC, electron positions are sampled efficiently. During the VMC
run, independent electron positions shall be assigned to a reference electron
arrangement. This is, in principle, a simple problem. In mathematical terms,
positions of individual electrons are denoted ri with index i of the electron.
In QMC, spin up and spin down electrons are distinguished and treated here
separately. Let Ru = (r1, …,rnu) and Rd = (r1, …,rnd) collect the electron positions
to a vector with all (nu) up-spin electrons and all (nd) down-spin electrons,
respectively. Both vectors can be combined to R = (r1, …, rn). The reference
electron arrangement is described by such a vector Rref. Same-spin electrons are
indistinguishable, which is accounted for by the Slater determinant form of the
wavefunction, but have nonetheless assigned indices.

The identification of, for instance, the electron of a certain lone pair requires
finding the index of the electron closest to the reference position of the lone pair. In
practical terms, the assignment of an index in the electron position vector R to an
index of the reference vector Rref describes the identification of an electron. The
assignment of all electrons inR to the referenceRref has the obvious limitation that
all electrons must be assigned and no two electrons are allowed to be assigned to
the same reference position. Furthermore, up and down-spin electrons are assigned
separately. The assignment of both types of electrons are obviously permutations
of the indices, and finding the best assignment of the electrons amounts to finding
the best permutation. This requires a cost function that determines which of two
permutations is better.

The assignment of all electrons to the closest reference position is not possible
in all cases due to the uniqueness requirement. A cost function that retains this
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assignment if possible is the Euklidian distance d of the 3n dimensional position
vectors. Its square is

This cost function has been suggested previously (6). The assignment requires
finding the permutations (separately for spin up and spin down electrons) that
minimize the cost function.

A naïve implementation of the assignment would evaluate d for all
permutations requiring nu! + nd! evaluations. This approach would render the
method inapplicable to all but the smallest molecules. Luckily, the electron
assignment with the squared Euklidian distance is a special case of the linear
sum assignment problem, well known in computer science (9). The Munkres
or Hungarian algorithm solves this problem efficiently with a complexity of
O(N3) (10, 11). The assignment has to be carried out for independent electron
arrangements during the VMC run. Since the local energy calculations have a
complexity of O(N3) as well, the single electron density calculations do not have
a higher complexity as the VMC calculation itself. Because of the importance of
the assignment complexity for the usability the Munkres algorithm is presented
here with an emphasis on the flexibility with respect to the cost function.

The assignment of (the indices of) the vector R to Rref, both of length n, is
described by an n x n assignment matrix X whose elements are zero except when
ri is assigned to rj when xij = 1. Possible assignments, i.e. permutations have one
and only one “1” in each row and each column. There are n! possible assignments
or permutations, here denoted X(k).

The cost function is evaluated based on a n x n cost matrix C = (cij) whose
elements contain the “cost” for the assignment of ri to rj which is

The cost function C(k) is constructed from the two matrices

The structure of the X matrices ensures that the cost function is indeed the
Euklidean distance of a permutation of R and Rref.

The Munkres algorithm is able to find the assignment X that minimizes C(k)
in O(N3) steps provided that the cij are non-negative integer. Non-negative real
numbers can be converted approximately to integers by multiplication with a large
number and retaining the integer part.

TheMunkres algorithm consists of the following three steps acting on the cost
function matrix C (see Figure 1). First, from each row of C the smallest value in
the row is subtracted. Second, from each column the smallest value is subtracted.
Afterwards the algorithm looks for the minimal number of rows and columns to
cover all zeros of the matrix C. Third, the smallest value which is not covered
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after step two is subtracted from all uncovered values. If the number of rows or
columns necessary to cover all zeros of C now equals the total number of rows or
columns the assignment can be found from the zeros of the matrix. Otherwise the
algorithm goes back to step three. For details see references (10, 11).

Figure 1. Simplified illustration of the steps taken by the Munkres algorithm to
find the correct assignment.

Figure 2. Isosurfaces (60%) for the single electrons of LiH, with the SD (a) and
the CD assignment (b). (c) Isosurface of the total spin up density.

From the knowledge of the algorithm one can deduce that more general cost
functions can replace the simple distance criterion although not arbitrary ones. The
cost function has to be a sum of matrix elements of the C matrix. One possible
generalization to improve the assignment is the introduction of weights such as

with weights depending only on ri and rj.
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The assignment with respect to the simple squared distance works very well,
but has the unwanted effect that the electrons closest to the nuclei are not always
assigned to the core even though the reference position for the core electrons are
at the nucleus position (for K shell cores). This is due to the fact that the small
core electron-nucleus distance contributes only little to the overall cost function.
For best transferability and interpretation the closest up and down spin electrons
should be assigned to the “core”.

Rather than constructing an appropriate weight function we have suggested
in reference (6) to assign the closest electron of each spin to the core of atoms
heavier than Helium while all valence electrons are assigned with the Munkres
algorithm using the squared distance cost matrix. This algorithm will be denoted
CD (for core-distance) while the simple algorithm with the squared distance only
is denoted SD. One should note that the valence electrons can still come arbitrarily
close to the nucleus even with the CD algorithm.

The difference of the algorithms is demonstrated for LiH. This is not only a
simple molecule but also an excellent test case as it has a large core and only two
valence electrons that are strongly drawn toward the H atom. The single electron
densities are shown here as isosurfaces that enclose a given percentage of the single
electron density. In Figure 2 the spin up single electron densities are shown with
60% isosurfaces obtained with both algorithms from a HF wave function. The
value of 60% is arbitrary. Smaller or larger values would simply shrink or enlarge,
respectively, the surfaces. The global maximum of |ψ|2 is used here as reference
for the assignment. In both cases the total density is exactly partitioned into two
single electron densities (up and down spin densities are identical). The CD variant
leads to stronger localization and to a slightly more compact core while the valence
density appears to contain core contribution in the SD case. This example also
demonstrates how the construction of isosurfaces for the single electron densities
emphasizes the chemical structure of the system. While the two single electron
densities add up exactly to the total density, the two isosurfaces do not add up to
the isosurface of the total density. Regions where electrons are partly assigned to
the core and partly to the valence density may be within the isosurface of the total
density but outside the isosurfaces of both core and valence densities.

Figure 3. Isosurfaces (60%) of spin up valence densities ethane with the SD (left)
and CD assignment (right).
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Figure 3 shows a similar difference for single electron densities of ethane
obtained from a HF wavefunction. The C-H and C-C bond densities based on the
global maximum reference are shown with a clear separation of core and valence
only with the preassignment of the core electrons.

The better localization and separation of core and valence densities is
obtained by first assigning the electrons closest to the core and then all other
electrons efficiently with the Munkres algorithm and the distance cost function.
This assignment algorithm is easily extended to larger cores.

Optimal Reference Positions: Self-Consistent Centers of Charge

The single electron densities are to a large extent fairly independent of the
chosen reference positions. In previous work, the maxima of |ψ|2 have been
utilized for the reference. The maxima itself contain considerable information
about the many-body structure of the wavefunction but have a few drawbacks as
reference positions. First, the spin up and spin down position do not coincide for
correlated wavefunctions due to the Coulomb repulsion. This leads to apparent
“spin polarization” and single electron densities that are not identical for spin
up and spin down electrons. No observable spin polarization arises because the
reverse spin polarization is as likely in closed shell systems and all possible
spin polarizations cancel exactly (6). Therefore, an unpolarized reference that is
obtained from the wavefunction itself (like the maxima) without any assumption
about the “chemical structure” is desirable. Second, many local maxima exist
with similar values of |ψ|2, and it is not always obvious that the global maximum is
the best reference. Finally, finding the maxima is a global optimization procedure
which becomes quite time consuming for large molecules.

Figure 4. (a) Maxima for the uncorrelated and (b) correlated water wavefunction
together with the (c) self-consistent centers of charge of the correlated water

wavefunction.
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The construction of self-consistent centers of charge is a way to avoid many
drawbacks of the maximum reference. These points result from an iteration
of reference points that are obtained as centers of charge of the single electron
distribution. Let c denote the center of a charge density ρ(r) with a total charge q.
The center is obtained with

The integration is easily carried out during the VMC run for each single
electron density after the assignment step. If a certain statistical accuracy of c is
obtained, the center of charges of all single electron densities are defined as new
references for renewed calculations of single electron densities. This process is
iterated until the centers of charge are converged. It is more time consuming than
the density determination with given reference points, but still efficient.

Figure 5. Isosurfaces (60%) for the spin up single electron densities obtained with
self-consistent center of charge reference for a correlated water wavefunction.

In Figure 4 first results for the self-consistent centers of charge are presented
and compared with the global maximum reference. The uncorrelated and
correlated maxima of water as well as the self-consistent centers of charge are
shown. In case of the uncorrelated maximum the positions of the electrons with
different spin within the maxima are equal and both form a tetrahedron around
the oxygen atom. When dynamical correlation is added, here with a Jastrow
factor, the positions of electrons with different spin differ. Now the electrons of
different spin form two distorted tetrahedra which are rotated against each other.
This reference causes the single electron densities of spin up and down electrons
to differ slightly. These differences are arbitrary due to indistinguishability of the
electrons in a closed shell system with Ms = 0 and can be cancelled by building
electron pair densities. This is demonstrated for water in the previous publication
of the authors (6). In Figure 4c the self-consistent center-of-charge reference
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positions are shown. Spin up and spin down centers of charge converge to the
same positions even if the initial reference positions are the maxima of Figure
4b. The four positions form again a regular tetrahedron around the oxygen atom.
The reference positions are now close to the middle of the bond. The reference
position is determined by the electronegativity difference of the two atoms and
the size of their cores.

Figure 6. Two maxima for the uncorrelated ethene wavefunction (a-b), together
with the self-consistent centers of charge (c).

Since spin up and spin down electrons have the same reference position in
closed shell systems the corresponding single electron densities agree as well. The
electron pair density is then simply twice the single electron density. In Figure 5
the single electron densities based on the center-of-charge reference points are
shown and may be compared with the single electron densities from the maximum
reference in ref. (6).
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Figure 7. Isosurfaces (60%) for the spin up single electron densities of the
double bond obtained with self-consistent centers of charge of the uncorrelated

ethene wavefunction.

The advantages of self-consistent center-of-charges are obvious in the ethene
molecule. For the uncorrelated ethene wavefunction it is possible to obtain four
different maxima with the same value of |ψ|2. Two of these four maxima are shown
in Figure 6. They differ only in the positions of the electrons along the C=C bond
axis. In case of the two maxima shown in Figure 6a and 6b the spin up and spin
down electrons take the same positions and form two distorted tetrahedra linked
by one edge. Two additional maxima are formed by filling all four positions
along the C=C bond and thus by separating spin up and down electrons. These
invariant maxima result in qualitatively different single electron densities. While
the possible maximum positions contain considerable chemical information about
the double bond, it is desirable to have a unique description of the double bond.
This is achieved with the self-consistent centers of charge because the same set of
self-consistent centers of charge is obtained for all equivalent maxima as starting
point. The converged centers of charge are in the middle of the C=C bond above
and below the ethene plane. The corresponding single electron densities show a
banana bond-like shape (Figure 7).

This and other calculations show that much fewer self-consistent centers of
charge are obtained than maxima. They converge for a wide range of starting
points. The centers of charges of the localized molecular orbitals are a particularly
simple and sensible starting point for the iteration. Due to favorable scaling
behavior and easy parallelization of the VMC method and the SED partitioning it
is possible to study much large molecules than considered in this study.

Finally, we note that the proposed density analysis is quite distinct from the
well-known quantum theory of atoms and molecules (QTAIM) of R. W. Bader
(12, 13). In this method, the mathematical properties of the total electron density
are investigated. This allows the determination of so-called bond critical paths
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that may be identified as chemical bonds and domains that are identified as the
atoms in the molecule. In contrast to QTAIM, the single electron density analysis
described in this paper employs the mathematical properties of the 3n-dimensional
all-electron probability density |ψ|2 which is projected into ordinary space. As in
QTAIM, the total density is exactly partitioned, but into single electron densities
and not into atoms, allowing the distinction of, for instance, bond electrons
and lone pair electrons. Furthermore, the single electron densities overlap
whereas the QTAIM partitioning results in disjunct atomic domains. The concept
of overlapping electron densities is closer to traditional bonding concepts in
chemistry.

Concluding, we have shown that strongly localized single electron densities
are obtained when core electrons are assigned prior to the valence electrons. The
flexibility of the efficient assignment algorithm has been discussed. Finally, it has
been shown that iterated centers of charge of the single electron densities form a
chemically more reasonable reference for electron assignments than maxima of
|ψ|2. With this reference strongly localized single electron densities are obtained
that describe core electrons, bond electrons, and lone pair electrons. These
transferable units are obtained directly from the many-electron distribution |ψ|2
without the need of any “chemical insight”. Any wavefunction such as VB or
MO-based functions including multireference ones can be employed to obtain
single electron densities. Most efficient are the Slater-Jastrow functions usually
employed in QMC.
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Chapter 7

Many-Body Nodal Hypersurface and Domain
Averages for Correlated Wave Functions

Shuming Hu, Kevin Rasch,* and Lubos Mitas

Department of Physics, North Carolina State University,
Raleigh, North Carolina 27695
*E-mail: kmrasch@ncsu.edu

We outline the basic notions of nodal hypersurface and domain
averages for antisymmetric wave functions. We illustrate
their properties, analyze the results for few-electron explicitly
solvable cases, and discuss possible further developments.

QuantumMonte Carlo is one of the most effective many-body methodologies
for the study of quantum systems. It is based on a combination of analytical
insights, robustness of stochastic approaches, and performance of parallel
architectures (1–10). The approach has been applied to a variety of challenging
problems in electronic structure of atoms, small molecules, clusters, solids,
ultracold condensates, and beyond (1–15). The two most commonly used QMC
methods are variational Monte Carlo and diffusion Monte Carlo (DMC). Let us
briefly recapitulate the basics of the DMC method.

It is straightforward to show that for τ →∞, the operator exp(-τH) projects
out the ground state of a given symmetry from any trial function with nonzero
overlap. We assume that the Hamiltonian H is time-reversal symmetric so that the
eigenstates can be chosen to be real. This projection is most conveniently carried

© 2012 American Chemical Society
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out by solving the Schrödinger equation in an imaginary time integral form so that
the product

obeys

The Green’s function is given by

where

denotes positions of N particles and ET is an energy offset. In the DMC method,
the function f(R,t) is represented by a set of 102-104 random walkers (sampling
points) in the 3N-dimensional space of electron configurations. The walkers are
propagated for a time slice τ by interpreting the Green’s function as a transition
probability from R′→ R. The kernel is known for small τ, and the large time t limit
is obtained by iterating the propagation. The method is formally exact provided
that the boundary conditions, i.e. the fermion nodes of the antisymmetric solution
defined as Φ(R,∞) = 0, are known (1, 5, 14).

Unfortunately the antisymmetry does not specify the nodes completely,
and currently we have to use approximations. The commonly used fixed-node
approximation (14) enforces the nodes of f(R,t) to be identical to the nodes of
ψT(R) which then implies that

everywhere. It is therefore clear that the accuracy of the fixed-node DMC is
determined by the quality of the trial wave function nodes. The commonly used
form for ψT is the Slater-Jastrow wave function given as

where Ucorr is the correlation factor explicitly depending on interparticle distances
thus describing pair or higher order correlations explicitly. The typical number
of Slater determinants is between 1 and 103, and the corresponding weights dn
are usually estimated in multi-reference Hartree-Fock (HF) or Configuration
Interaction (CI) calculations and then re-optimized in the variational framework.
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It is quite remarkable that the nodes of such Slater-Jastrow wave functions
(often with a single-determinant product only) lead to unexpectedly small errors
and that the typical amount of obtained correlation energy in fixed-node DMC is
≈95%. This is true for essentially all systems we have studied: atoms, molecules,
clusters and solids (1–15).

The fixed-node approximation is perhaps the single most important unsolved
problem which hampers the progress in further improvement of accuracy
and efficiency of the QMC calculations. One of the key difficulties is that
the fixed-node bias is actually very small on the scale of the total energy. A
comparison of the total energy components for a typical electronic structure
problem is given in Table I.

Table I. Energy components as percentages of the total energy in
Coulombic systemsa

Energy Component % of Etotal

Kinetic 100

Exchange ≈8

Correlation ≈3

ΔFN ≈2
a ΔFN = Eexact – EFNDMC/HF is the fixed-node (FN) bias corresponding to the Hartree-Fock
nodes.

Considering the typical fluctuations of the DMC energy per stochastic sample
(which is of the order of a few percent of the total energy), the node-related “signal”
is very weak. Unfortunately a few percent of the correlation energy can influence
the energy differences we are interested in.

The optimization methods (despite a number of recent developments) have
difficulties picking up the nodal bias signal as it appears buried in the noise which is
inherent to the QMCmethodology. Recent developments in the nodal optimization
using the self-healing method (16) enable the filtering of some of the noise quite
effectively, however, the performance of the method has to be tested on more
systems. However, this is not the only problem. Another key issue is that our
knowledge of the nodal properties is very limited. At present we simply have no
clear idea how to improve the nodal hypersurfaces for general cases in an efficient
manner (for example, in systems which might require an exponential number of
Slater determinants just to describe the correct spin and spatial symmetries).

We simply have to develop other measures which can provide more targeted
information about the nodal shapes. It is straightforward to show that the total
energy or its components are not selective enough in this respect. Let us consider a
few simple illustrations. For example, the two non-interacting two-electron atomic
states 3S(1s2s) and 3P(1s2p) have the same total, kinetic, and potential energies, but
different nodal shapes. Since the symmetries in this case are different, one might
argue that the symmetry should be used to distinguish and, possibly, classify the
nodal shapes in this case. Consider another case: non-interacting four-electron
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atomic states 1S(1s22s2) and 1S(1s22p2). These degenerate states have the same
symmetry, however, the nodes are different, both in topology and in the shape.
Clearly, we would like to measure and distinguish the nodes in such cases.

Characterization of the nodes can be of significant interest in another context.
Recently, an interesting scenario was suggested for systems in quantum critical
point, namely, that the nodes in such a state might exhibit fractal (scale-invariant)
character (16). For this purpose it would be very useful to measure the smoothness
of the nodal surfaces.

Let us now consider the stationary Schrödinger equation

The exact fermionic eigenstate ψ determines the nodal domains

and the corresponding node ∂Ω. We integrate the equation over the Ω+ domain
only, and using the Gauss-Stokes-Green theorem we get

Similarly, we can integrate over the Ω– domain and if we put it together
(assuming either free or periodic boundary conditions) then we get

The obtained equation shows that the total energy is given as a sum of
kinetic and potential components, which we call nodal (hypersurface) and domain
averages (nda, in short). They are defined as follows

and

so that

This derivation and the definitions deserve some comment. First, we tacitly
assumed that there is only one positive and one negative nodal domain, however,
this generically applies only to fermionic ground states. Generalization to more
domains is straightforward: one integrates domain by domain and sums the
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results. It therefore applies to any eigenstate including excitations, both fermionic
and bosonic (the bosonic ground state is an exception since it is nodeless). It
is important that Ekinnda depends solely on the gradient of the wave function
on the node (domain boundary) and not on the wave function values inside the
domain. The key idea is that these expressions measure properties of the quantum
amplitudes more directly than the expectation values. In fact, the expectations
supress the nodal signal since both the square of the exact eigenstate and also its
Laplacian vanish at the node. Note that although the sum of kinetic and potential
nda components produces the total energy, the expression has no variational
property, i.e. it is not quadratic in the wave functions as is the usual expectation
value. It is rather a “one-sided expectation” which enables one to probe the nodal
structure as we will show in what follows.

The nda values are not trivial to calculate, and for illustration we will present
just a few simple cases. Let us first consider a toy model, an electron in a 2p orbital
so that the state is 2P(2p). For the Coulomb potential V(r)=-Z/r we have

and we can write

Since the node is the plane given by z=0 and

we can easily evaluate the kinetic energy part

Note that the integral in the numerator is over the plane while the integration
domain of the denominator is the full 3D volume. One can also verify that the sum
of the two components gives E=-Z2/8 as expected.

Cases with more than one particle are much more interesting. We mentioned
the two excitations of the He atom, namely 3S(1s2s) and 3P(1s2p), and also the
corresponding four-particle singlets 1S(1s22s2) and 1S(1s22p2). Actually, these
are quite nontrivial to calculate even in noninteracting cases. The state 3S(1s2s)
is straightforward but rather involved, and one ends up with numerous integrals.
The states with 2p orbitals are even more complicated since the node is given
by a combination of exponentials and linear functions so that the integration
domains become complicated. Therefore for this case we have used Monte Carlo
integration. The resulting values are listed in Table II.
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Table II. Energy components for two- and four-electron atoms: standard
expectations and nda valuesa,b

States Etot Ekin Epot Ekinnda Epotnda

3S(1s2s) -5/8 5/8 -5/4 10/221 -1185/168
3P(1s2p) . . . 1/20 (ε) -27/40 (ε)
1S(1s22s2) 5/4 5/4 -5/2 20/221 -1185/884
1S(1s22p2) . . . 1/10 (ε) -27/20 (ε)

a The energies in a.u. are proportional to Z2. The results are exact except for the values with
the error bars ε≈1.10-5 in the brackets. b The dot means that the value is the same as in
the row above.

The values show clearly that one can distinguish the states and the nodes by
the nodal and domain averages. For example, the Ekinnda differ by more than 10
(0.002)% between the corresponding degenerate rows. Note that if one would
consider the interaction, then the two four-electron states would mix. Clearly, the
nda components will depend on the mixing and thus reflect the node change under
interactions. If fact, there is an optimal mixing which provides the best node within
the functional form as shown previously in calculations of the Be atom (17, 18).

It is interesting to analyze another case: two noninteracting electrons in 2p2
configuration which can couple into the three states 3P, 1S, 1D. For example, the
wave function for the state 3P(2p2) is given by

and the nda potential energy can be written as

The integrals can be factored into radial and angular components. Since the
angular parts cancel out, we get

It is perhaps somewhat unexpected that we also get the same result for the
other two states 1S(2p2) and 1D(2p2), all of which are summarized in Table III.
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Table III. Energy components for 2p2 states for Coulomb potential: standard
expectations and nda values

States Etot Ekin Epot Ekinnda Epotnda

3P, 1S, 1D -1/4 1/4 -1/2 1/12 -1/3

We therefore conclude that all the components are the same for all three states,
although two of them are singlets and one is triplet and also have different spatial
symmetries. Note that this is strictly true only for the noninteracting system. This
implies that the states might have equivalent nodes, and a little bit of analysis
actually shows that. One can find that the node for the 3P state can be described
from the perspective of one of the two electrons as the plane defined by the angular
momentum axis and the second electron. Similarly, the node of the 1D state looks
to one of the electrons as the plane which contains the angular momentum axis and
is orthogonal to a plane defined by the second electron and the angular momentum
axis. Finally, for 1S states one of the electrons sees a plane which is orthogonal
to the position vector of the second electron. In all three cases the node subset
is therefore a plane which passes through the origin. Although these are only
subsets of the complete 5D node, which is a hyperbolic hypersurface in 6D, the
construction enables us to get an insight into their properties. In fact, this shows
that there are only two nodal domains in all three cases: the scanning electron is
either on one or the other side of the considered plane. Let us further define the
equivalency for a set of nodes. By equivalency we mean that the nodes in the
given set can be transformed to each other by coordinate transforms which are
unitary (the determinant of the transformation matrix is equal to +1 or -1). This
includes not only rotations but also reflections around the origin since otherwise
the triplet nodes cannot be transformed to the singlet nodes. This can be inspected,
for example, by transforming the node of one of the 1D states

to the node of 3P state using the reflection of one coordinate component, say, x2→-
x2 (see the wave function above). With some effort one could find that the nodes
of the singlets are also equivalent. For this the reader might find it useful to consult
our previous papers on related topics of nodal structure and analysis (9).

Note that for two interacting electrons in these states the nda components will
not be identical since the e-e Coulomb repulsion will distort the wave function
gradients in different ways for different states, and energetically, it will favor the
triplet over the singlets.

The previous case of two non-interacting electrons can be further generalized
to a given subshell l=n-1 for any n and for any possible spin symmetry and
occupations up to the maximum 2(2l+1). The energies can be evaluated the
same way as above, and it is revealing to explore the quasiclassical limit of the
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nda estimates. Consider the class of atomic (excited) states such that k electrons
occupy subshell l=n-1 with any allowed spatial and spin symmetry. The state is
2S+1L[φlk] where k is the occupation. One can find:

and

so that all the non-interacting nodes for various symmetries are equivalent. By
checking out the quasiclassical limit l→∞, we find

and

Clearly, averages over ψ2 and |ψ| become identical since the quantum effects
become irrelevant for l→∞.

Let us now turn to the case of a system with interactions. Consider the two-
particle 3D harmonic problem with the Coulomb interaction. The Hamiltonian is
given by

where g0 is the interaction strength. For certain values of g0 and ω, combined
with particular symmetry, one can find simple analytical eigenstates. For g0=1
and ω=1/4, the lowest triplet of P symmetry 3P(sp) is given exactly as (19)

where the noninteracting solution ψ0 (i.e. g0=0) is as usual

The noninteracting energy for this particular state (n1=n2=l1=0, l2=1) can be
expressed as

84

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
M

ay
 2

8,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
00

7

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



while the interacting exact eigenvalue is

These analytical solutions are sufficiently simple so that we can evaluate the
nda components for various combinations of Hamiltonians and wave functions.

a. Noninteracting Hamiltonian and Noninteracting Wave
Function

It is straightforward to find out that for g0=0, we get

and correspondingly

b. Interacting Hamiltonian with g0=1 and the Exact Eigenstat
After making transformation to center of mass and relative coordinates, one

can find

and using the exact result above, we find

c. Interacting Hamiltonian and Noninteracting Wave Function
with the Correct Node

It is interesting to find out the estimation energy considering an approximate
wave function which has the exact node. Let us first consider the noninteracting
wave function. This will give quite a poor estimate since the potential and kinetic
energy will be “unbalanced,” but it will still be instructive. Taking ψ0 above, we
get
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and

This provides a clear demonstration that the energy obtained as nda sum is not
necessarily an upper bound since

which gives 1.226 ... vs. the exact value 5/4. Actually, the error is not very
large considering how crude the trial state is. The dominant error is in the potential
part, which comes out lower. This is caused by two effects: the noninteracting
value of the exponent in the gaussian is not optimal and a secondary impact comes
also from the absence of the correlation. The kinetic energy component is the same
as in the noninteracting Hamiltonian, i.e. slightly larger than the exact. This results
from the missing exchange hole which affects the gradient of the wave function
on the nodal surface. Obviously, these ideas should be explored further and such
investigations are currently in progress.

Conclusions

We have introduced the nodal hypersurface and domain averages, dubbed
“nda,” as a tool for characterization of the nodes of trial wave functions. We have
demonstrated their properties on a number of few-particle cases and analyzed
implications of these results. For example, we were able to distinguish the nodal
differences between degenerate states of the same and different symmetries. These
characteristics enabled us to identify the equivalence of nodes in unexpected
situations such as between noninteracting singlets and triplets. Clearly, the results
show interesting potential and deserve further investigation. The theory can be
further explored with much more powerful developments which will be presented
elsewhere.

This work is supported by ARO, DOE and by the NSF grants DMR-0804549
and OCI-0904794. Discussions with Wei Ku on topics related to this paper are
gratefully acknowledged.
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Chapter 8

A Quantum Monte Carlo Study of the Ground
State Chromium Dimer

Kenta Hongo1,2 and Ryo Maezono*,1

1Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1282, Japan

2The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa,
Tokyo 190-8562, Japan

*E-mail: rmaezono@mac.com

We take variational and diffusion quantum Monte Carlo (VMC
and DMC) methods to investigate the chemical binding of
the ground state chromium dimer, employing various single
determinant (SD) or multi-determinant (MD) wavefunctions
multiplied by a Jastrow factor as a trial/guiding wavefunction.
The molecular orbitals (MOs) entering the SD wavefunction
were calculated using restricted or unrestricted Hartree-Fock
or density functional theory (DFT) calculations where five
commonly-used local (SVWN5), semi-local (PW91 and
BLYP), and hybrid (B1LYP and B3LYP) functionals were
examined. The MD expansions were obtained from the
complete-active space self-consistent field, generalized valence
bond, and unrestricted configuration interaction methods. We
also adopted the UB3LYP MOs to construct the MD expansion
and optimized their coefficients at the VMC level. The DMC
binding curves have a minimum indicating a bound state, but
the comparison of atomic and molecular energies gives rise to
a negative binding energy for the DMC simulations.

© 2012 American Chemical Society
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The chromium dimer (Cr2) has been a notorious molecular system long
known for its chemical binding mechanism involving a highly complicated blend
of 4s-4s and 3d-3d interactions with antiferromagnetic coupling. The ground
state is experimentally found to be a singlet state , but up- and down-spin
electrons in Cr2 are antiferromagnetically localized on each of the Cr atom. A
tremendous number of experimental and theoretical studies have been devoted
toward understanding such a complicated mechanism so far. A comprehensive
list of the literatures as well as a detailed description of the binding mechanism
are found in Ref. (1).

To summarize its binding nature, Cr2 can be regarded as a ‘near-degenerate’
system having metallic multiple bonds in terms of traditional molecular orbital
(MO) theories. To describe such a system properly, multi-reference theories such
as multi-reference configuration interaction (MRCI), coupled-cluster (MRCC),
and second-order perturbation (CASPT2) methods are essential beyond restricted
or unrestricted Hartree-Fock (RHF/UHF) as well as the generalized valence
bond (GVB) or complete active space self-consistent field (CASSCF) methods.
Although sophisticated multi-reference methods have recently provided a good
evaluation of the equilibrium bond length (Re) comparable with experiment,
there is still room to improve further the accuracy of the binding energy (De);
for instance, recent spectroscopic experiments reported Re = 1.6788 Å (2) and
De = 1.56 ± 0.05 eV (3), while the latest MRCC (CBS extrapolation) values of
Re and De deviate from experiment by 0.2% and 10%, respectively (Re = 1.675
Å and De = 1.400 eV) (4). In density functional theory (DFT), though various
exchange-correlation (XC) functionals are available such as the localized density
approximation (LDA), generalized gradient approximation (GGA) as well as the
hybrid XC functionals (e.g., B3LYP) in both restricted and unrestricted treatments,
qualitatively satisfactory results have not been achieved as well, implying that a
delicate and subtle balance between exchange and correlation should be involved
in XC functionals in order to appropriately describe the chemical binding in Cr2.

Quantum Monte Carlo (QMC) methods (5, 6) are one of the most accurate
techniques in state-of-the-art ab initio calculations for quantitative descriptions of
electronic structures. There are two typical QMC calculations, i.e., variational and
diffusion Monte Carlo (VMC and DMC) methods. VMC is not usually accurate
enough since its result strongly depends on the correlated trial wavefunction
adopted. DMC is a technique for numerically solving the many-electron
Schrödinger equation for stationary states using imaginary time evolution.
The fixed-node approximation is usually assumed to maintain the fermionic
anti-symmetry in DMC. Although the fixed-node DMC can accurately evaluate
the ground state energy of many atoms and molecules using only the trial node
from a single determinant (SD), it sometimes fails, especially for near-degenerate
systems such as the Be atom. This implies that the fixed-node DMC method can
work well for the dynamic correlation, but not for the static (or non-dynamic)
correlation which should be included at the stage of choosing the fixed-node
guiding wavefunction. Hence Cr2 can be regarded as a good challenge to QMC.

In our previous study (1) we applied VMC and DMC methods to the ground
state Cr2 using various choices of Slater-Jastrow trial wavefuntions in both
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single- and multi-determinant forms. The MOs in the single determinant were
obtained using restricted or unrestricted HF and DFT calculations including
SVWN5 LDA, PW91 and BLYP GGA, B1LYP and B3LYP hybrid functionals.
The multideterminant expansions were obtained from the GVB and (truncated)
unrestricted CISD methods. In this article we shall review our previous study and
report our QMC results obtained using additional multideterminant calculations.

Quantum Monte Carlo Methods

We take standard variational and fixed-node diffusion Monte Carlo (VMC
and DMC) methods with various choices of trial/guiding wavefunctions to
calculate the ground state energy and binding curve of Cr2. Quality of the
guiding wavefunctions in DMC is examined according to the variational principle
with respect to the fixed node (5, 6), while practical DFT calculations do not
necessarily satisfy the variational principle because of their approximate XC
functionals. Note that one cannot therefore compare the QMC total energies with
the DFT (SCF) ones. Gaussian03 (7) was used for SCF calculations, while we
used CASINO ver.3.0 (8) for QMC calculations. Some calculations (HF and
GVB) were carried out using GAMESS (9) for SCF and QWalk (10) for QMC.
General and detailed references about the methods themselves are available in
the form of the textbooks and review papers (5, 6) as well as in this book. Here
we give a brief description of our pseudopotential and trial wavefunctions. More
detailed information is found in our previous study (1).

The inner Neon core (10 core electrons) of the Cr atom were replaced
with a small core norm-conserving pseudopotential which is constructed from
Dirac-Fock atomic solutions, i.e., Lee-Needs (LN) soft pseudopotential (11) using
Troullier-Martins construction. The ground state Cr2 molecule has 14 up- and 14
down-spin electrons. The present non-local pseudopotentials were evaluated by
the T-move scheme (12) which is devised to reduce the instability and bias due to
the locality approximation (13).

We adopted the many-body (trial) wavefunction in the form of Slater-Jastrow
type. The Slater part was expanded in terms of direct products of up- and
down-spin Slater determinants, associated with expansion coefficients. The
single determinant wavefunction corresponds to taking only one expansion
term. The orbital functions in the determinants were expanded with a contracted
Gaussian basis set (17s18p15d6f)/[8s8p7d3f] (whose contraction exponents and
contraction coefficients are available in the Supplementary Materials of Ref.
(1)). Variety of the XC functionals are examined to construct orbital functions
including restricted or unrestricted HF, SVWN LDA, PW91 and BLYP GGA,
B1LYP and B3LYP hybrid functionals. In addition to a single-determinant form
of the many-body wavefunction, we also tried several multi-determinant (MD)
forms. The multideterminant expansions were obtained from the CASSCF,
GVB, and truncated unrestricted CISD (UCISD). For all the SD and the
best MD trial/guiding wavefunctions, we also take into account the backflow
transformation (14), which is introduced to modify the nodal surface variationally
(15, 16). It consists of electron-nucleus and electron-electron terms whose
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parameters were optimized by the filtered reweighted variance minimization
scheme (17) allowing spin polarized degrees of freedom. As for the Jastrow
part (18), we employed one-, two-, and three-body terms (19) which take into
account the dynamical correlation due to electron-nucleus, electron-electron, and
electron-electron-nucleus coalescence, respectively. The electron-electron cusp
condition (20) is imposed in the two-body term. Variational parameters in the
Jastrow part are designed to be able to include spin-polarized case. They were
optimized individually at each bond length by the variance minimization (17) as
well as the energy minimization (21) procedures.

Single Determinant Calculations

We shall first summarize our findings in QMC calculations within the SD
treatment, according to Ref. (1). UB3LYP turns out to give the variationally best
total energy. Except for HF, the unrestricted DFT nodes are found to be better
than the corresponding restricted ones. At the SCF level, RHF gives a much
higher energy than UHF, which is a well-known failure of restricted treatments
for a spin-polarized system (22). In DMC, however, the amplitude of the many-
body wavefunction is automatically adjusted by the projection operation and is not
directly governed by the XC approximation. The results show that the RHF nodal
surface is superior to the UHF one, leading us to examine restricted methods for
generating the trial nodal surface.

Any choice of trial nodes gives a binding curve with an energy minimum, but
unrestricted trial nodes end up with a much larger Re and smaller De in the QMC
final results, compared with the experimental values. Though ULDA and UGGA
reproduce a proper Re, it is found that the QMC calculations with these trial nodes
overestimate Re. The restricted nodes recover fairly well Re even at QMC, but they
give a higher energy than the unrestricted ones. At the experimental Re, we could
not get a stable molecular energy lower than twice the atomic energy (zero-binding
energy) at the QMC level.

Multi-Determinant Calculations

Within restricted multideterminant treatments, CASSCF and GVB are both
expected to give a proper description of the spin polarized Cr2 (23), due to their
multideterminant expansions with near-degenerate orbitals. As for the CAS trial
wavefunction, we attempted to use CAS(12,12) arising from the 4s(1)3d(5) atomic
orbitals, but it has too many determinants for QMC to be performed. Instead,
we employed CAS(2,4) and CAS(2,7), though they do not have a significant
physical meaning. CAS(12,12) has 427,350 configuration state functions (CSFs),
while CAS(2,4) and CAS(2,7) have 16 and 49 CSFs, respectively. In contrast to
CAS, GVB properly describes a spin polarization in Cr2 with more compact form
of the MD expansion. Our GVB wavefunction was constructed from 12 active
occupied MOs up to level 20 near HOMO-LUMO level, similar to CAS(12,12).
This provides a very compact form of the MD expansion with only 64 terms. An
explicit form of the present GVB wavefunction is given in Ref. (1). In this study
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the GVB binding curves were not evaluated because we could not obtain reliably
converged results at stretched geometries.

Table I. HF, UB3LYP, CASSCF, GVB, UCISD, and QMC energies at the
experimental bond length (Re = 1.68 Å)

Methods SCF VMC DMC

UHF -171.701 -172.665(6) -172.903(2)

RHF -171.097 -172.584(4) -172.911(2)

UB3LYP -172.974 -172.756(2) -172.954(2)

CAS(2,4) -171.403 -172.548(2) -172.727(3)

CAS(2,7) -171.405 -172.559(2) -172.743(3)

GVB -171.624 -172.698(6) -172.861(2)

GVBopt -172.723(2) -172.933(2)

UCISD(UHF) -172.599 -172.772(2) -172.926(3)

UCISD(HOMO-LUMO±6) -172.599 -172.744(2) -172.901(2)

UCISD(UB3LYP+3) -172.794(2) -172.968(2)

UCISD(UB3LYP+10) -172.747(2) -172.950(2)

Best ZBE -172.931(2) -173.012(3)

NOTE: Energies are in units of hartree (a.u.). The number in the parenthesis refers to the
estimated error in the last digit. Except for the RHF and UHF trial/guiding wavefunctions,
the QMC results are those without the backflow transformation. ZBE stands for the zero-
binding energy, and ‘GVBopt’ for GVB with coefficients optimized further by VMC (see
text).

The CAS(2,4) and CAS(2,7) wavefunctions give rise to a higher energy than
the RHF wavefunction at the VMC and DMC levels. The GVB wavefunction
achieves a better (lower) VMC energy than using the HF one, while the former
turns out to give a higher DMC energy than the latter. Then we tried to optimize
the coefficients further at the VMC level using a mixed scheme between energy
and variance minimization (21) with 95%weight on the former. Using this (shown
as ‘GVBopt’ in Table I), we obtained a better DMC value than when using HF, but
still above the best zero-binding energy.

Figure 1 shows (a) SCF, (b) VMC, and (c) DMC binding curves using
CAS(2,4), CAS(2,7) and UB3LYP. Though CAS(2,4) and CAS(2,7) could not
achieve a lower DMC energy than UB3LYP, several interesting behaviors are
found as follows: At the SCF level, CAS(2,7) gives a binding curve with a similar
shape to UB3LYP, though overestimating Re. The VMC and DMC values of
Re, in turn, get shorter, and their shapes of the binding curve are similar to the
restricted SD cases. This implies that the CAS nodal structure is essentially the
same as the restricted SD one, but the terms involved in the CAS expansion well
describe the localized amplitude similar to the unrestricted SD cases.
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Figure 1. (a) SCF, (b) VMC, and (c) DMC binding curves using CAS(2,4),
CAS(2,7), and UB3LYP. Note that in (a) SCF energies are shifted so that each
minimum, -171.540 , -171.461, and -173.026 hartree to be zero. In QMC

simulations, (b) and (c), error bars are within symbol size.
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Since our restricted treatments could not give better results than UB3LYP,
we tried UCISD (unrestricted CI singles and doubles) methods. Using a UHF
reference, the UCISD expansion gives 7,521,823 terms, all of which cannot be
taken into account in a QMC calculation. We truncated this expression into 35

determinants, removing those terms with coefficients . The coefficients
were optimized further at the VMC level, first by weight-limited variance
minimizations (8), followed by energy minimizations. This wavefunction is
referred to as ‘UCISD(UHF)’ in Table I. Using this, we achieved a lower VMC
energy than when using UB3LYP, indicating that our VMC optimization of the
CI coefficients was successful. At DMC, however, UCISD(UHF) turned out to
give a worse result than UB3LYP. We also tried another choice of expansion: 67
excited configurations, in which the active space was HOMO±6 and the single
and double excitations of occupied orbitals were restricted to virtual orbitals with
the same symmetry [UCISD(HOMO-LUMO±6)]. This gives, however, a worse
result than UB3LYP even at the VMC level.

As can be seen in Table I, the above CI treatments could not give any
variationally better trial node than UB3LYP. The easiest way to go beyond
those treatments would be to add UCISD expansions to UB3LYP because it is
the best starting point. By considering the UB3LYP orbital symmetry near the
HOMO level, we made two different sizes of CI expansions: The first one took
into account only 3 virtual orbitals above the LUMO, including only σ and π
symmetries [UCISD(UB3LYP+3)], and the secondwas a larger one with 10 virtual
orbitals in which σ, π, and δ symmetries were included [UCISD(UB3LYP+10)].
In both cases we considered only such excited configurations between the
orbitals with the same symmetry, resulting in around 50 and 650 determinants
for UCISD(UB3LYP+3) and UCISD(UB3LYP+10), respectively (the numbers of
determinants vary a little amount depending on R).

VMC using the UCISD(UB3LYP+3) trial wavefunction gives a better result
than when using the UB3LYP one because the former includes more variational
degrees of freedom to be optimized. As for UCISD(UB3LYP+10), however,
we could not achieve a satisfactory optimization, giving a higher VMC energy
[-172.747(2) hartree] than the initial UB3LYP calculation [-172.756(2) hartree].
The UCISD(UB3LYP+3) node gives a lower DMC energy than the UB3LYP
node. Focusing on UCISD(UB3LYP+3), we further introduced the backflow
transformation. The DMC with the backflow transformation gives a lower energy
[-172.992(3) hartree] than that without the backflow transformation [-172.968(2)
hartree], but still above the best ZBE [-173.012(3) hartree].

Summary and Perspective

We studied the chemical binding of the ground state Cr2 molecule using
the fixed node DMC method. Various different types of nodal structures were
compared based on the variational principle with respect to the node of the DMC
guiding function. We tested various choices of XC functionals in restricted or
unrestricted forms. In addition to the single determinant form, we also tried
several multi-determinant wavefunction obtained from the CASSCF, GVB, and
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UCISD methods. Our best guiding wavefunction was found to be the UCISD
one with the UB3LYP orbitals, whose expansion coefficients were optimized
at the VMC level. Although our best DMC result even using the backflow
transformation cannot reproduce the binding of Cr2 at the experimental Re, we
believe that our benchmark on various choices of the trial/guiding wavefunctions
would be helpful to calibrate the performance of current QMC methods as well as
to exploit more accurate trial/guiding wavefunctions.

We also attempted to use another many-body wavefunction form, Pfaffian
(24), which is available in QWalk. However we failed to optimize the off-diagonal
elements of the Pfaffian and then we could not obtain reliable results, so not
reported here. Our work on the Cr2 molecule is still in progress for obtaining
the Pfaffian wavefunction as well as exploiting which levels of MOs are to be
included in the multideterminant wavefunction.
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Chapter 9

A Benchmark Quantum Monte Carlo
Study of Molecular Crystal Polymorphism:

A Challenging Case for
Density-Functional Theory

Mark A. Watson,*,1 Kenta Hongo,1,2 Toshiaki Iitaka,3
and Alán Aspuru-Guzik1

1Department of Chemistry and Chemical Biology, Harvard University,
12 Oxford Street, Cambridge, Massachusetts 02138, U.S.A.
2The Institute of Statistical Mathematics, 10-3 Midori-cho,

Tachikawa, Tokyo 190-8562, Japan
3Computational Astrophysics Laboratory, RIKEN, 2-1 Hirosawa,

Wako, Saitama 351-0198, Japan
*E-mail: mark.watson@cantab.net

We have applied the diffusion Monte Carlo method to
determine the relative stabilities of the two polymorphs of
the para-diiodobenzene organic molecular crystal. Our result
predicts the α phase to be more stable than the β phase
at zero temperature (with a 2% statistical uncertainty) in
agreement with experiment. We used the result to benchmark
eight commonly-used local, semi-local and hybrid density
functionals. The semi-local and hybrid functionals incorrectly
predict the β phase to be the most stable using the experimental
crystal structures, while the addition of an empirical dispersion
correction was found to strongly over-compensate this error.
The local functionals are the most consistent, but this is almost
certainly due to fortuitous error cancellation. We conclude that
there is a real need for efficient, accurate many-body methods,
or improved density-functionals, which can accurately capture
electron correlation and dispersion interactions in molecular
crystals.

© 2012 American Chemical Society
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1. Introduction

Recent progress in the understanding and synthesis of advanced structural
and functional materials (1–6) presents exciting challenges to the fields of
electronic structure theory and computational materials science. For example,
much attention has recently been devoted to the discovery and assessment of
organic molecular crystals for the fabrication of nanoelectronic devices and
organic semiconductors (7–11). Theoretical methods can aid in the first-principles
characterization and design of such materials in silico, but their potential has yet to
be fully realized. The major obstacle is the steep growth in computational cost of
the most accurate ab initio methods when treating macromolecules or solid-state
systems compared to simpler gas-phase calculations. In practice, therefore,
significant compromises are usually made between the level of theory and the
computational feasibility, and most often the only practical method available is
a variation of density-functional theory (DFT) (12). The purpose of this work
is to therefore benchmark the performance of DFT against an accurate, reliable,
but expensive many-body method. We have chosen a particularly challenging
result - the relative stabilities of the crystal polymorphs of para-diiodobenzene
(DIB) - in order to demonstrate the limitations of many commonly-used DFT
exchange-correlation functionals.

DIB is remarkable among organic molecular semiconductors because
of its excellent charge-transport properties, reflected in its unusually high
room-temperature hole mobility, which is greater than 10 cm2/(Vs) (13). It
has therefore attracted much interest in the field of organic electronics. A
particularly interesting feature of DIB is the fact that it exists in two different
crystal phases, known as the α and β polymorphs. Polymorphism is the ability
of a material to exist in more than one crystalline state while retaining the same
chemical composition, but displaying different crystal packing motifs, physical
and chemical properties (14, 15). In many cases, only one polymorph will
be useful as the active ingredient of a drug (16–18) or as the component of a
functional material. Brillante et al. were the first to investigate the polymorphism
of DIB theoretically (19). They used density-functional theory and found that
the α phase is less stable than the β phase by about 96 meV per unit cell at zero
temperature. Unfortunately, this contradicts experiment, which shows that the α
phase is the most stable up to about 326 K (20, 21). A detailed understanding
of polymorphism can therefore be of great importance, but the treatment of
this phenomenon is a major challenge for first-principles methods. Indeed, the
rigorous treatment of crystalline materials, or the ab initio prediction of crystal
structures, is a well-known and long-standing problem in general (22, 23).
Theoretical studies of polymorphism (24) are particularly difficult due to the very
small energy changes that need to be accurately captured; in the case of DIB, on
the order of 1 meV per atom.

Currently, DFT is the method of choice for performing ab initio calculations
on solid-state materials or molecular crystals because it is an effective
independent-particle theory and is highly competitive in terms of the balance
between computational cost and accuracy. As a result, DFT studies have been
routinely used by several groups to explore the properties of DIB, such as
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hole mobility (25, 26). However, the accuracy and reliability of conventional
exchange-correlation functionals for studying sensitive phenomena such as
polymorphism is questionable. Indeed, despite its success, DFT has some
well-known weaknesses. For example, conventional functionals often fail to
accurately capture dispersion interactions, as was comprehensively shown in
the recent benchmark study of Zhao and Truhlar (27). In molecular crystal
calculations, especially when comparing polymorphs, it is reasonable to expect
that an accurate treatment of these interactions is important. Even for some
covalent clusters, such as C20 or B20, several commonly used functionals
have been shown to be highly unreliable in predicting geometries and relative
ground-state energies (28). Nevertheless, in most cases, DFT is essentially the
most accurate ab initio method available due to the prohibitive computational
cost of the alternatives.

In gas-phase molecular quantum chemistry, there is a systematic hierarchy
of well-established, convergent approximations to the many-body solution of the
electronic Schrödinger equation (29). For small or medium-sized systems, highly
accurate predictions can be made, and using local correlation methods, their high
computational cost can be reduced to allow applications on systems with as many
as one thousand atoms (30–33). There is much to be done, however, to extend
these successes to the solid-state regime. Hartree-Fock (HF) theory is the lowest
order wavefunction approximation, and like DFT it is a single-particle theory. As
a result, efficient implementations have been realized in terms of crystalline orbital
theory (34, 35). In contrast, higher-order wavefunction methods show a much less
favorable scaling of computational cost as one moves to infinite systems, since
they are unable to exploit the translational symmetry of the periodic lattice in the
same way (36, 37). For example, the HF (or DFT) method usually scales like
O(n2-3) in the size of the basis n, and in a crystalline orbital implementation, the
computational cost grows as O(n2-3K), where K is the total number of k-points
in the first Brillouin zone. In contrast, the coupled-cluster singles and doubles
(CCSD) method usually scales like O(n6), but has a much more expensive cost
which grows like O(n6K4) in a crystalline calculation. Nevertheless, considerable
effort has been devoted to this problem in recent years and interesting progress is
being made (36–42). For example, a cluster-expansion method has been used to
successfully apply many-body wavefunctions routinely to molecular crystals (43),
albeit with additional approximations.

As an alternative to the above wavefunction hierarchy, we consider in this
work the quantum Monte Carlo (QMC) method. QMC methods can evaluate
the total energy of many-electron systems to high accuracy (44–46) because they
can explicitly take into account electron correlation effects at reasonable cost by
means of a stochastic approach. Here, we employ one of the most accurate QMC
methods, namely, diffusionMonte Carlo (DMC), which has been shown to have an
accuracy comparable to the CCSD(T) (CCSD with perturbative triple excitations)
wavefunction method in a cc-pVQZ basis set (47). However, while CCSD(T)
scales like O(n7), DMC has a more modest cost, which grows linearly to cubicly
with the size of the system, albeit with a larger prefactor (48). Nevertheless,
while DMC offers an attractive alternative, the issue of computational scaling with
respect to the number of k-points in crystalline systems remains. Here we do not
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attempt to solve this problem, but instead take the pragmatic approach of only
computing the DMC energy at a single k-point. We then estimate the resulting
finite-size error using a DFT-based correction scheme as described in Sec. 2.

In summary, let us reiterate our motivation. DFT is currently the most
feasible method available for the general treatment of molecular crystal systems,
but it introduces significant uncontrolled approximations, and its reliability
is therefore questionable for highly sensitive properties. In contrast, DMC is
one of the most accurate many-body methods available in practice, but it is
computationally very expensive and can only readily provide an estimate of the
total energy. We therefore take the view that the DMC results can be used as a
cornerstone to benchmark the more approximate methods, such as DFT, and to
assess their reliability for the prediction of more interesting physical properties.

2. Methodology

We now outline the computational details of the DFT and QMC methods
used in this work. First, we describe the crystal geometries we use for the two
para-DIB polymorphs. In the DMC case, due to the high computational cost and
difficulty of DMC geometry optimization (49), it was only feasible to perform the
calculations at the experimental crystal geometries, which we obtained from the
Cambridge Structural Database (http://www.ccdc.cam.ac.uk). The records of the
lattice constants and unit cell atomic positions for the α and β phases are identified
by the codes ZZZPRO03 and ZZZPRO04, respectively. The two polymorphs
are packed into orthorhombic crystal lattices, with space group symmetry Pbca
for the α phase, and Pccn for the β phase (21). As shown in Figure 1, both
structures have four DIB molecules (48 atoms, 584 electrons) per unit cell, and
the qualitative difference between the α and β packing motifs can be clearly seen
in terms of the orientation of the individual molecules. At the DFT level, we were
also able to perform geometry optimizations of the crystal structure, relaxing both
the atomic positions and lattice constants, and we therefore report results for both
experimental and optimized structures.

All the DFT calculations were performed using the CRYSTAL09 program
package (35), with a 1×3×4 Monkhorst-Pack k-point mesh. For the Gaussian
basis, we used the standard 6-31G** set for the carbon and hydrogen atoms
(incorporating one contracted function for each core orbital and two contracted
functions for the valence orbitals, in addition to one polarization function per
atom) and the 3-21G set (which has no polarization functions) for the iodine
atoms. As we discuss later, the non-trivial choice of basis set is crucial for
accurate and stable calculations, and we will explore this issue more rigorously in
a future publication.

Concerning exchange-correlation functionals, we considered eight different
approximations. Within the local density approximation (LDA), we employed:
[1] Dirac-Slater exchange (50) combined with the Vosko-Wilk-Nusair #5
parameterization (51) of the correlation functional, LDA(SVWN); [2] Dirac-Slater
exchange with the Perdew-Zunger ′81 parameterization (52) of the correlation
functional, LDA(PZ); [3] von Barth-Hedin (53) exchange and correlation,
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LDA(VBH). We employed four generalized-gradient approximation (GGA)
functionals: [1] Perdew-Wang ′91 exchange and correlation (PW91) (54); [2]
Perdew-Burke-Ernzerhof exchange and correlation (PBE) (55); [3] Becke ′88
exchange (56) and Perdew ′86 correlation (57) (BP86); [4] Becke ′88 exchange
and Lee-Yang-Parr correlation (58) (BLYP). In addition, we considered one
hybrid functional, B3LYP (59), which is one of the most widely-used and
generally accurate functionals for studying isolated molecular systems. Finally,
to explore the effect of dispersion, which is not accurately recovered by the
above functionals, we also employed a London-type empirical correction scheme
proposed by Grimme (60). In those cases, we augment our functional notation
to give, for example, “PBE+D”.

Figure 1. (a) Chemical structure of the para-DIB molecule and orientation of the
unit cell lattice vectors, a, b, and c. (b) The α phase unit cell, with experimental
lattice constants: a = 17.000, b = 7.323, c = 6.168. (c) The β phase unit
cell, with experimental lattice constants: a = 17.092, b = 7.461, c = 6.154;
all units in Angstroms; taken from the online Cambridge Structural Database

(www.ccdc.cam.ac.uk).

All the QMC calculations were performed using the QMCPACK program
suite (61), starting with a Slater-Jastrow trial wavefunction. The Jastrow factor
(62) included one- and two-body Pade-type functions, which have six and
four adjustable parameters, respectively, and were optimized using a variance
minimization procedure (63). We obtained the one-electron orbitals comprising
the Slater determinant from DFT calculations using the program package ABINIT
(64, 65) with a plane wave basis set, a cut-off energy of 40 hartree, and the
Perdew-Wang (1992) LDA functional (54). In all the QMC calculations, the
core electrons of the carbon and iodine atoms were replaced with a nonlocal
Trail-Needs pseudopotential, obtained from the CASINO pseudopotential library
(66, 67). (The final number of correlated electrons per unit cell was therefore
168).
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The corresponding DMC calculations were performed within the fixed-node
approximation (44) using the nodes of these trial wavefunctions. To obtain
reasonably converged results, we accumulated statistics over 3.2×107 time steps,
with a step size of 0.001 a.u., and a target population of 16384 walkers. Due to
the high computational expense of the DMC calculations, we took a pragmatic
approach towards the treatment of finite-size errors (FSE). In fact, we only
computed the DMC energy at the Γ point using a single unit cell. While it may
be possible to use either twisted boundary conditions (68) or a larger supercell
to reduce the FSE, we decided in this case to employ the a posteriori correction
scheme of Kwee et al. (69) to estimate the finite-size error at the DFT level.
For this purpose, we performed the calculations with an LDA functional, plane
waves and Fritz-Haber-Institute (FHI) pseudopotentials with a cut-off energy of
50 hartree using the Quantum Espresso package (70). More discussion is given
in Sec. 3.3.

For the accuracy required in this study, we also considered it important to
include an estimate of zero-point energies (ZPE). We provide estimates only at
the DFT level, computed with the CRYSTAL09 suite using the ‘FREQCALC’
keyword, which estimates the ZPE within a simple harmonic approximation.
Further details can be found in Refs. (71, 72).

3. Results and Discussion

To accurately and reliably predict the small energy differences we observe
between the para-DIB polymorphs, many factors must be carefully included in
the calculation, such as: [1] choice of first-principles method; [2] accurate crystal
geometry; [3] treatment of finite size effects; and [4] inclusion of zero-point
energies (ZPE). In Sec. 3.1, we report our benchmark DMC calculation and use
it to evaluate several commonly-used DFT functionals. All computations are
done using the experimental crystal structures. In Sec. 3.2, we investigate the
geometric effects, and evaluate the ability of DFT to optimize the crystal structure
accurately. Finally, in Sec. 3.3, we discuss the significance of ZPE and finite-size
effects.

3.1. DFT and DMC Predictions

Here we report our results of the polymorph stabilities computed at the
experimental geometries using DMC and DFT. Table I and Figure 2 summarize
our findings in terms of the computed energy differences, ΔE ≡ E(α) – E(β),
between the α and β phases. Results from eight different exchange-correlation
functionals are shown, including in some cases the dispersion correction scheme
proposed by Grimme (denoted “+D” in the functional labels).

Our benchmark DMC result predicts the α phase to be more stable than the β
phase by 48meV per unit cell, with a statistical uncertainty of ±24meV. This result
is composed of an energy difference of ΔE = −98 meV and a finite-size correction
of +50 meV, estimated using the method of Kwee et al. described in Sec. 2. It
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should be stressed that ΔE = −48meV/cell is a very small energy difference of only
1 meV per atom. In other words, the question of polymorph stability in para-DIB
is clearly an extremely difficult challenge for quantum chemistry.

Table I. Energy differences in meV/unit cell, ΔE ≡ E(α) – E(β), between the
α and β phases of para-DIB molecular crystals, at the experimental (expt)
and DFT-optimized (opt) geometries using various functionals, including
Grimme’s dispersion correction (denoted “+D”). The DMC result at the

experimental geometry, including the estimated finite-size correction (FSC),
is also shown.

Method ΔE(expt) ΔE(opt)

LDA(SVWN) -122 -128

LDA(PZ) -123 -129

LDA(VBH) -132 -142

PW91 29 -165

PBE 25 -12

BP86 30 -75

BLYP 93 12

B3LYP 68 -16

PBE+D -134 -141

BP86+D -192 -226

BLYP+D -162 -172

B3LYP+D -155 -163

DMC+FSC -48 +/- 24 n/a

Indeed, turning to the DFT results, the inadequacy of conventional
exchange-correlation functionals to reliably predict the correct energy ordering is
immediately apparent. The DFT results in Figure 2 are grouped into three clear
classes: (1) LDA (ΔE < 0); (2) GGA and hybrid (ΔE > 0); and (3) dispersion
corrected (ΔE < 0). The three LDA functionals give similar results, predicting
the α phase to be clearly more stable than the β phase by approximately 125 meV
per unit cell. In contrast, the four GGA functionals all predict the β phase to be
the most stable, by an amount ranging from 25 meV (PBE) to 93 meV (BLYP).
The addition of exact exchange does not have a major impact on the results, and
the B3LYP hybrid functional also predicts the β phase to be the most stable (by
68 meV). The effect of Grimme’s dispersion scheme is much more dramatic,
however. In the cases we report, ΔE decreases by at least 150 meV on adding the
dispersion correction. For BLYP, the ‘correction’ is more than 250 meV!
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DMC is one of the most accurate methods currently available for this
kind of calculation, and yet the size of the error bar in Figure 2 highlights the
computational challenge at hand. We chose a time step of 0.001 a.u., which
is small enough to make time-step error negligible, but as a result, significant
computer time was required to reduce the statistical error. In fact, to achieve
an error bar of ±24 meV, our DMC calculation consumed approximately
75,000 CPU-hours. A larger time step would facilitate faster convergence,
but could introduce unknown systematic errors due to a failure of the short
time approximation. The DMC+FSE result correctly predicts the experimental
observation that the α phase is more stable than the β phase at zero temperature.
The error bar implies that the probability of an incorrect energy ordering due
to poor statistics is at the 2σ level, or approximately 2%. However, while we
are confident of the DMC statistics, the issues of trial wavefunction (fixed-node
approximation) and finite-size errors are still a point of concern. Of these, the
most significant is almost certainly the latter. We discuss this more in Sec. 3.3.

Figure 2. Computed energy differences, ΔE ≡ E(α) – E(β), between the α
and β phases of para-DIB molecular crystals, at the experimental (expt)

geometries using DFT and DMC. Results for eight different exchange-correlation
functionals, including Grimme’s dispersion correction (denoted “+D”) are
shown. The DMC result includes a finite-size correction (FSC) of 50 meV/unit

cell, and we also display the statistical error bar.

DFT is the most widely used method for the ab initio treatment of molecular
crystals, but it is striking that all the GGA functionals considered here incorrectly
predict the β phase to be the most stable, while the cruder LDA’s correctly yield
ΔE < 0. B3LYP, which is perhaps the most widely used functional in chemistry,
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also predicts the β phase to be the most stable. The addition of exact exchange
only marginally improves the poor BLYP result, which is the worst of all the
tested functionals. A partial understanding of the discrepancy between the LDA’s
and GGA’s becomes clear when we look at the geometric effects in the next
subsection. However, first, we will comment on the results of the dispersion
correction (denoted “+D”).

As we already noted, the effect of the dispersion correction is dramatic. It is
not surprising that an accurate treatment of dispersion interactions is important in
this system, especially when we compare the energies of the polymorphs. In the
calculation of ΔE, the intramolecular energy components will largely cancel out.
The resulting small energy difference will have large relative contributions from
the (usually weak) intermolecular interactions, including the dispersion energy.
The DFT dispersion correction successfully shifts the GGA results in the right
direction, resulting in a large negative ΔE in all cases. But if we take the DMC
result as a benchmark, the resulting magnitudes of the ‘corrected’ GGA results are
much too large, by factors of approximately 3 or 4, suggesting that the dispersion
scheme is not well balanced. It would be extremely interesting to test alternative
dispersion-corrected functionals or other wavefunction-based methods.

Figure 3. Computed energy differences, ΔE ≡ E(α) – E(β), between the α and β
phases of para-DIB molecular crystals, using eight different exchange-correlation
functionals, including Grimme’s dispersion correction (denoted “+D”) are

shown. Energies at the experimental and optimized geometries are compared in
red and green, respectively.
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3.2. DFT Structure Optimization

Due to the relatively low computational cost compared to QMC, it was also
possible at the DFT level to explore the sensitivity of the results to changes in
the crystal geometry. For each functional tested, we therefore optimized not
only the atomic positions in the unit cell, but also the crystal lattice constants,
to obtain a fully relaxed structure. We then recomputed the energy difference of
the polymorphs and the results are shown in Table I and Figure 3. In all cases,
the relaxed geometry lowers ΔE compared to calculations at the experimental
geometry, but the change is a relatively small percentage in the case of the LDA
and dispersion-corrected (“+D”) functionals. Perhaps surprisingly, the effect of
geometry relaxation is much more dramatic when applied to the GGA functionals
and B3LYP, particularly in the case of PW91 where ΔE changes from +29 meV
at the experimental geometry to −165 meV after optimizing the structures!
Although this dramatic change may be surprising, the relaxed geometries give
the correct qualitative prediction of the relative energies (i.e. that the α phase is
more stable than the β phase) for all functionals tested, except BLYP (where ΔE
remains slightly positive).

Figure 4. Optimized unit cell volumes for the α and β polymorphs evaluated
using eight DFT functionals, including Grimme’s dispersion correction (denoted

“+D”), compared with experiment in the final column.
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Table II. Optimized lattice constants and unit cell volumes, V, for the
two polymorphs of DIB evaluated using eight DFT functionals, including

Grimme’s dispersion correction (denoted "+D"), compared with experimenta

α phase β phase

a b c V a b c V

LDA(SVWN) 16.289 6.708 5.956 650.8 16.387 6.783 5.966 663.2

LDA(PZ) 16.300 6.706 5.957 651.2 16.391 6.788 5.964 663.6

LDA(VBH) 16.225 6.662 5.936 641.6 16.320 6.725 5.955 653.6

PW91 18.721 8.993 5.473 921.5 17.506 8.175 6.091 871.7

PBE 18.748 8.589 5.555 894.5 18.498 8.116 5.815 873.0

PBE+D 16.748 6.780 5.971 678.0 16.841 6.789 6.028 689.2

BP86 18.799 9.331 5.387 945.1 18.487 9.864 5.527 1007.9

BP86+D 16.465 6.560 5.991 647.1 16.646 6.596 6.003 659.1

BLYP 18.281 10.073 6.093 1122.0 18.461 10.40 6.005 1153.0

BLYP+D 16.622 6.716 6.071 677.7 17.085 6.796 5.978 694.0

B3LYP 18.620 9.733 5.756 1043.2 18.502 9.948 5.831 1073.3

B3LYP+D 16.610 6.731 6.046 676.0 16.966 6.791 5.998 691.1

Expt. 17.000 7.323 6.168 767.9 17.092 7.461 6.154 784.8
a Length and volume are in units of Å and Å3, respectively.

The optimized lattice constants and unit cell volumes are reported in detail in
Table II for the eight DFT functionals, including Grimme’s dispersion corrections
and the experimental values. To make the interpretation clearer, we plot the results
of the optimized unit cell volumes for both phases in Figure 4. In addition, we
plot the α phase lattice constants in Figure 5 and the β phase lattice constants in
Figure 6. Looking at the unit cell volumes first, we note that experimentally the
α phase has the most compact crystal structure, and it is also energetically the
most stable polymorph at low temperature. Physically, the stability associated
with the more compact structure is expected to be driven by a net increase in
attractive interactions due to van der Waals and other noncovalent interactions.
The conventional functionals cannot describe these energies accurately, and hence
the GGA functionals, and B3LYP, fail to recover these compact structures. This is
very clear in Figure 4, where the unit cell volumes predicted by these functionals
are much too large in all cases. For PW91 and PBE, even the ordering of the α
and β volumes is wrong. On the other hand, although the unit cell volumes are
too compact, the LDA optimized structures are much closer to experiment, even
though the LDA cannot describe dispersion either. It is well known, however, that
the LDA overbinds in molecular calculations and it is likely that this tendency
is compensating for the lack of dispersion. Overall, this cancellation of errors is
probably a major reason why the LDA structures and ΔE values are qualitatively
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correct and much better than the GGA results. However, the poor quantitative
accuracy of the LDA results (e.g. ΔE = −122 meV for SVWN) confirms the
unreliability of these predictions.

Figure 5. Optimized lattice constants for the α polymorph evaluated using eight
DFT functionals, including Grimme’s dispersion correction (denoted "+D"),

compared with experiment.

This argument is reinforced if we consider the effect of Grimme’s dispersion
correction. Looking at Figure 4, it is clear that the addition of dispersion
interactions into the DFT calculations strongly favors the more compact crystal
structures. In fact, the dispersion-corrected functionals give the best cell volumes
of all the functionals and this is reflected in much improved ΔE values, probably
for the right reasons in this case. In fact, the differences between specific GGA’s
are insignificant compared to the addition (or not) of the dispersion correction.
Nevertheless, the correction over-compensates, and the volumes actually become
too small compared with experiment. Indeed, as with the LDA results, this
correlates directly with ΔE values that are significantly too low compared to
the DMC benchmark of −48±24 meV. For the LDA and dispersion-corrected
functionals, there is a clear correlation between the overly compact unit cell
volumes, compared to experiment, and the too-low ΔE values.

Overall, the poor structural predictions of the GGA’s and B3LYP confirm
the unreliability of these functionals for predicting the polymorph stabilities.
For example, the PW91 ΔE(opt) value (−165 meV) has the correct sign and is
comparable with the values from the dispersion-corrected functionals. However,
it is apparent from Figure 4 that the favorable result is most likely due to fortuitous
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error cancellation, since the optimized structures give α and β unit cell volumes
which are incorrectly ordered compared with experiment.

Finally, it is interesting to take a closer look at Figures 5 and 6. Overall, we
see the same trends as we already noted in Figure 4, such as the generally poor
GGA results. However, it also seems that some of the lattice constants are more
sensitive to errors than others. For example, it appears that the b lattice constant
is particularly badly reproduced by the GGA’s and B3LYP. Recalling Figure 1, we
might hypothesize why this is. It is well known that the dispersion interaction is
important for the accurate description of π-π stacking interactions. Although the
geometry is slightly distorted in para-DIB, it can be seen that this interaction will
be significant along the b lattice vector.

Figure 6. Optimized lattice constants for the β polymorph evaluated using eight
DFT functionals, including Grimme’s dispersion correction (denoted "+D"),

compared with experiment.

3.3. Zero-Point and Finite-Size Effects

Due to the very small energy differences, a rigorous study of the polymorph
stabilities should include an analysis of not only finite-size errors, but also zero-
point energy (ZPE) contributions, which could easily be significant on an energy
scale of 10 meV. For a relatively weakly bound molecular crystal such as para-
DIB, the majority of the ZPE should come from intramolecular contributions,
which we expect to be approximately the same for both polymorphs. In other
words, we would not expect the ZPE to qualitatively change our predictions of
polymorph stabilities. Nevertheless, a careful treatment of ZPE effects is known
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to be necessary in some studies. Recently, Rivera et al. have emphasized the
importance of accurately including ZPE’s when estimating the enthalpy difference
between the α and γ polymorphs of glycine (73).

To investigate these issues in para-DIB, we therefore performed DFT
calculations using three exchange-correlation functionals to estimate the ZPE in
the α and β phases using the methodology described in Sec. 2. At the optimized
crystal geometries, the computed ZPE energy differences [i.e. ZPE(α) − ZPE(β)]
using LDA(SVWN), B3LYP and B3LYP+D, were 8.6 meV, 4.4 meV and −1.0
meV per unit cell, respectively. These results broadly confirm our assumption
that the ZPE is less important than other effects, especially if we believe the
B3LYP+D value to be the most reliable. Note that a correction of 1 meV is an
order of magnitude smaller than the statistical error bar of our benchmark DMC
calculation.

Analogous arguments based on the structural similarity of the two phases can
also be made regarding the finite-size errors. That is, we may also expect the
majority of the finite-size errors to approximately cancel out when computing the
polymorph energy difference ΔE. In our DFT calculations, we used a 1×3×4 k-
point mesh which was found to converge the energies to within 10 meV. However,
the differences between the Γ-point energies and those computed with more k-
points suggest that the finite-size error in our DMC result could be large on the
scale of ΔE, even though the above argument suggests it might be small in general.
Due to the computational expense of DMC, however, we decided to estimate
the DMC finite-size error using the DFT-based a posteriori correction scheme
of Kwee et al. described in Sec. 2. As reported in Sec. 3.1, the correction was
found to be +50 meV, which is significant and of the same order of magnitude as
the Γ-point ΔE. We are currently performing further QMC calculations to explore
the finite-size effect more rigorously and we will report our findings in a future
publication

4. Conclusion

We have studied the relative stabilities of the α and β polymorphs of the
para-diiodobenzene molecular crystal using several DFT approximations and the
diffusion Monte Carlo method. The work is an extension of our preliminary study
(74), including more accurate DMC statistics and a more comprehensive testing
of different exchange-correlation functionals. Our DMC result predicts the α
phase to be more stable than the β phase at zero temperature with a 2% statistical
uncertainty, in agreement with experimental observation. In contrast, the DFT
results using eight commonly-used functionals were inconsistent and showed
large variations in the predicted polymorph energy differences. The semi-local
and hybrid functionals incorrectly predict the β phase to be the most stable using
the experimental crystal structures. The LDA functionals give qualitatively the
correct result, but significantly overestimate the energy difference compared to
the DMC benchmark. The addition of an empirical dispersion correction to the
GGA and hybrid functionals corrects their behaviour and consistently predicts the
α phase to be the most stable, but again the energy differences are significantly
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over-estimated. We also explored the effects of crystal geometry and found that
the GGA and B3LYP functionals were unable to find the experimental structure.
Again, we rationalized this failure in terms of the poor description of dispersion
interactions, evidenced by the dramatic changes we observed when adding the
dispersion correction.

In summary, we conclude that there is a real need for efficient many-body
methods or improved density-functionals which can accurately and reliably
capture electron correlation and dispersion interactions in molecular crystals. In
addition to benchmarking the DFT results, we hope that our work demonstrates
the possibility of applying DMC to challenging chemical problems in the solid
phase where a rigorous treatment of electron correlation is essential.
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Chapter 10

Quantum Monte Carlo in Presence of
Spin-Orbit Interaction

A. Ambrosetti,1 F. Pederiva,*,2 E. Lipparini,2 and L. Mitas3

1Dipartimento di Fisica, University of Padova, via Marzolo 8,
I-35131, Padova, Italy

2Dipartimento di Fisica and INFN - Gruppo collegato di Trento,
University of Trento, via Sommarive 14, I-38123 Trento, Italy
3Department of Physics, North Carolina State University,

Raleigh, North Carolina 27695, U.S.A.
*E-mail: pederiva@science.unitn.it

The combined recent interest in nanoscale systems and
spintronics has led to a renewed attention on spin orbit (SO)
effects in solid state physics. Among the several numerical
approaches available, Quantum Monte Carlo Methods (QMC)
are probably best suited in order to achieve the elevated
accuracy standards, required for disentangling the very small
spin-orbit effects in relatively large system. Unfortunately,
standard QMC algorithms are unable of correctly describing SO
interacting systems. More sophisticated implementations are
thus required both for Variational (VMC) and Diffusion Monte
Carlo (DMC), implying a dynamical use of the spin degrees of
freedom and, for DMC in particular, an imaginary propagator
showing non trivial dependence on spin operators. Both DMC
and VMC extensions will be briefly discussed, together with
applications on the two dimensional electron gas with Rashba
interaction and isolated atoms.

© 2012 American Chemical Society
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Introduction

The spin-orbit (SO) interaction is a relativistic quantum effect induced by non-
uniform electric fields and resulting in a coupling of angular momentum to spin.
Its understanding and its correct description through the Dirac equation (1) dates
back to the beginning of the last century and, thereafter, intensive studies have been
performed (2) on isolated atoms (3), achieving theoretical estimates in remarkable
agreement with spectroscopic measurements.

Solid theoretical frameworks have been developed in order to satisfactorily
explain, for instance, the limits of weak and strong SO couplings usually referred
to as LS and jj couplings, and state of the art many body methods were also applied
in order to treat the problem (4).

Despite the elevated accuracy of theoretical calculations of single atoms SO
splittings, the effects of the SO interaction in solid state systemswas, up to recently,
largely unexplored.

The recent interest on spintronics and nanoscale systems such as quantum
dots, quantum wires, etc. led to a renewed interest in SO interactions due to the
discovery of the Rashba (5, 6) and Dresselhaus (7) interactions. The combined
experimental (8–12) and theoretical (13–16) efforts resulted in a good degree of
understanding of SO effects in nanostructures, and to the proposal of devices for
spin control (17). Due to its typically very weak strength, an efficient theoretical
description of the SO interaction necessarily requires an extremely elevated
degree of accuracy, only achievable by means of a restricted number of quantum
many body methods. Among the several numerical method available, QMC
algorithms certainly represent ideal candidates for addressing SO problems: a
favorable combination of computational costs and elevated accuracy proves
indeed essential for capturing tiny SO effects in relatively extended systems.

In the present paper both VMC and DMC methods will be considered.
Because their standard implementations are not directly applicable to SO
interacting systems, an extension of both methods is required. In both cases, the
spin degrees of freedom will be explicitly accounted for and integrated similarly
to space coordinates. However, due to the intrinsic differences between VMC
and DMC, the two methods will be modified according to two separate schemes.
DMC, in particular, will require the implementation of a specific imaginary time
propagator carrying an explicit dependence on spin operators.

VMC+SO: C and Pb Atoms

Method

VMC is a robust and efficient method for the investigation of many body
systems, and, at the same time, also one of the best tools for wave function
optimization. The delicate procedure of wave function optimization, in particular,
is a fundamental step for any subsequent application of DMC, especially in
fermionic systems. The availability of efficient VMC algorithms therefore
represents a crucial issue for the QMC treatment of many body problems.
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Standard VMC implementations (18) make use of an explicit integration
over space coordinates, while treating spin variables as static labels. Neglecting
the summation over the spin degrees of freedom, however, is only possible for
systems with spin rotation symmetry. In the case of Hamiltonians only depending
on space coordinates, this procedure is certainly correct, and the expectation value
of a general observable O could be mathematically expressed as:

where R represents the set of space
coordinates of the system. If a spin-orbit term is introduced in the Hamiltonian,
the same procedure is no longer applicable, and, in general, an explicit summation
over a complete spin basis set turns out to be necessary. Unfortunately, such
an exact summation soon becomes too expensive, even for a relatively limited
numbers of particles, due to the exponential dependence of the basis set dimension
(scaling as 2N). Some alternative strategy should therefore be applied in order to
retain the overall VMC efficiency.

A particularly efficient method, recently proposed by our group (19),
makes use of a mathematical equivalence between the integration over a
set of continuous variables and complete spin basis set summation in order
to reduce the whole computational effort. In order to illustrate the method
we will restrict consideration to the two-electron case, considering a trial
wave function composed of a single Slater determinant. Extensions to larger
number of particles and to linear combinations of Slater determinants are
trivial. In the following we will make use of the following single particle

spinors: and of the following
parameterization for the spin coordinates:

By using the above definitions, the two-body wave function Ψ (made of a
single Slater determinant) could be explicitly expressed as:
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Considering now a second Slater determinant Ψ′ (with corresponding single

particle spinors φ′), the overlap integral could be expanded over a
complete spin basis set:

Making use of simple trigonometric relations, it is possible to show (see ref.
(19)) the equivalence of the above expression with the following integral:

In fact, among all terms deriving from the product of the two Slater
determinants (such as (1)), only those containing either cos(αi)2 or sin(αi)2 will
give a non-zero contribution. It is then easy to prove that these terms exactly
correspond to those contained in . Furthermore, integration over the δi variables
is not necessary due to the occurrence of phase cancellation.

The mapping of spin summation over a continuous integration allows for
a simple extension of the Metropolis integration, which now will not only
include space coordinates, but also the spin parameters ai. The computation of
the expectation value of physical observables over a given trial wave function
relies exactly on the same scheme as (2) and could easily be achieved without a
particularly significant increase of computational cost with respect to standard
VMC.

C and Pb Atoms

An obvious first application of this algorithm certainly is to the study of
realistic spin-orbit splittings in atoms. These indeed represent particularly
favorable benchmark systems, due to the availability of both theoretical (20) and
experimental (21) results. In order to investigate both the two limiting cases of
weak and strong SO interaction, isolated carbon and lead atoms will be taken into
account, respectively corresponding to the LS and jj SO couplings.

Due to its low atomic number (Z=6), the C atom shows very tiny SO
splittings, induced by the presence of p valence electrons. Though much lower
than the other energy scales, SO splittings are a clearly observable non-trivial
feature of the C spectrum. Therefore, due to the small energy differences and
the peculiar ordering of the spectral lines, the C atom is a valuable candidate for
assessing the accuracy of the proposed method. The all electron Hamiltonian
considered is the following:

containing as the only relativistic
correction, the SO potential
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Other relativistic corrections are intentionally neglected, not being directly
involved in the splitting effect.

A possible choice for tackling the problem of SO splitting in the C atom
consists of using a trial wave function built as a single Slater determinant of HF
single particle orbitals. In Figure 1 VMC results are reported for the SO splitting
computed using the reference HF orbital obtained by Clementi and Roetti (20)
within a LS coupling approach. Comparison is also given between the results
obtained by using the realistic SO potential (3) and a commonly used approximated

version (22) obtained by using an averaged spherically
symmetrized effective potential Veff . As a general result, the correct ordering and
order of magnitude is obtained in both cases, being however the results obtained
from the realistic SO potential in better agreement with the experimental data
(21). This is due to an improved screening with respect to the averaged effective
potential.

Figure 1. SO splittings for the C atom, defined as E(J)-E(0). Lines represent
experimental data (21) . Squares and circles correspond to VMC results with

effective and realistic SO interaction, respectively.

Moreover, the reported VMC data clearly show that the theoretical ratio 1:2
between the splittings E(J=1)-E(J=0) and E(J=2)-E(J=1) predicted by the LS
coupling is correctly reproduced, though implying an imperfect agreement with
experimental data.
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As a second example, a VMC calculation of SO splittings in the Pb atom is
reported. Though the method is certainly applicable to all electron calculations,
given the large atomic number (Z=82), an optimal choice, enabling for a drastic
reduction of the computational cost, is the use of a pseudopotential (4).

Figure 2. SO splittings for Pb. Lines correspond to experimental data (21). VMC
results are reported as circles, HF data (21) is also given for comparison as

squares.

Within this approach only valence electrons are explicitly considered,
while keeping track of the inner electrons through an effective interaction. This
approximation still allows for an accurate description of SO effects, being those
induced by the p valence orbitals. Given the importance of SO effects in Pb, in
this case a VMC wave function optimization procedure was applied (19, 23, 24).

In Figure 2 VMC jj coupling results are reported for the three lowest states
of Pb, together with HF (4) and experimental (21) results. Correct ordering of
the different states is found, together with a good compatibility with both HF and
experimental data.

DMC+SO: Two-Dimensional Electron Gas in Presence of
Rashba Interaction

Hamiltonian

A two dimensional (2D) model is considered in this section in order to give a
description of an infinite system of electrons strongly confined along the z direction
(13). Such a system is experimentally realized in quantum wells, typically
based on semiconductor heterostructures. In this kind of systems electrons have
been experimentally proved (5) to undergo the effect of a SO-like interaction
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(Rashba interaction) having the form: where the
σi indicate the Pauli matrices and the pi the momentum operators. The constant λ
is the SO coupling strength, which is experimentally tunable by means of a gate
potential.

In order to simplify the description, we will consider the electrons in
the semiconductor as a homogeneous electron gas in which the effects of the
surrounding medium is included through an effective mass m=m*me and a
dielectric constant ε.

The resulting 2D effective Hamiltonian, which includes a kinetic term, the
Rashba spin-orbit interaction, and Coulomb interaction, reads:

Hereafter effective atomic units will be used, defining

Although the Rashba SO interaction certainly appears simpler than the
realistic SO interaction (3), the procedure illustrated in the following should be
intended as a general approach, that can be extended to a broad variety of systems.

Diffusion Monte Carlo

The imaginary--time τ propagation that is commonly implemented in
Diffusion Monte Carlo calculations relies on the knowledge of the imaginary time

propagator G defined by:

The standard approach is based on applying the Trotter-Suzuki approximation,
valid in the limit of short imaginary time steps:

where E0 is a constant
introduced in order to preserve the wave function normalization. When restricting
to local potentials the exponential factor containing V(R) is interpreted as a weight,
and is typically applied after the space propagation given by the free imaginary
time propagator G0. In this case only space coordinates are treated in a dynamical
fashion, while spin appears as a static label. In standard DMC implementations,
therefore, walkers will be displaced according to the Gaussian propagator G0 and
weighted according to the potential computed in the coordinates relative to the
walkers themselves. Such an implementation, however, is not possible in the case
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of potentials carrying momentum dependence. The fundamental reason is that
walkers basically are local objects, only carrying information about the system
coordinates. Since no information about the wave function derivatives is present
in the walkers, an alternative approach is required.

In the case of the Rashba potential, an extended DMC implementation (13,
14) is achieved by an explicit separation of the local and SO potential prior to the
use of the Trotter’s formula.

Three separate factors are thus obtained, containing local potential, SO
potential and kinetic energy, respectively:

Notice that the ordering of these three factors does not affect the result up
to order Δτ . The most convenient ordering is therefore chosen as in (4), placing
the exponential of VSO right after the Gaussian free imaginary time propagator.
The momentum operators contained in VSO will now act as derivatives on the G0
factor. The exponential of VSO is thus turned into a factor, depending on space
displacements and spin operators, which act rotating the spin components of the
single electron spinors. The third (local) factor is then used as a weight in the
standard way. The full propagator is expressed as:

R and R′ respectively indicate the new and old coordinates of the N electrons,
VCoul the Coulomb potential and Δrji (j=x,y) the x and y components of the j-th
electron space displacement.

The walkers should now carry both information regarding space and spin
coordinates, since both will be sampled along the imaginary time propagation.

At each propagation step, spatial displacements are sampled according to G0
and spin coordinates are modified depending on rotation matrix in (5). Finally the
weighting factor is applied.

Results

The infinite two dimensional electrons gas, described by theHamiltonian (3) is
modeled through a periodic two-dimensional cell, containing 58 electrons. Ewald
summation is applied in order to efficiently account for the Coulomb interaction
in the extended system and twist-averaged boundary conditions are implemented
in order to significantly reduce finite size effects (24, 25).

The many body trial wave function is built as a Slater determinant of single
particle orbitals multiplied by a two-body Yukawa-type (13) Jastrow factor.

Single particle orbitals were chosen as solutions of the
Hamiltonian of the system in absence of Coulomb interaction:
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where α and β are the spin coordinates
along the z axis of the electrons.

As clearly visible from the previous equation, for each wave vector k two
distinct non degenerate single particle states exist, carrying a + or a - sign in the z
up component. The former class of states, (+ sign) will be referred to as "quasi-up"
states, while the latter (- sign) will be named "quasi-down" states.

Given the intrinsic imaginary character of the trial wave function, the fixed
node approximation (26) cannot be employed. For this reason the fixed phase
approximation (27–29) was used instead. This approximation constrains the
projected distribution of walkers to the state of lowest energy having the same
phase as the trial wave function.

Figure 3. Energy values (in Ry) obtained at rs=1 for three different values of λ
respectively 0.1 (triangles), 0.2 (squares) and 0.5 (circles).

In Figure 3 DMC energy values are reported for three different values of the
SO coupling constant λ at fixed density (Wigner-Seitz radius rs=1) as a function

of the so-called quasi-polarization, defined as where N+ and N-
correspond to the number of quasi-up and quasi-down spin particles in the Slater
determinant.

From the three curves a tendency for the system clearly appears to assume
an increasing (in modulus) quasi polarization for larger λ values, respecting
somehow the independent particle picture even in presence of the Coulomb
two-body interaction.
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Figure 4. Pair correlation function g(r) decomposed into singlet and triplet
channels for rs=5 with and without spin-orbit interaction. Empty triangles and
empty circles correspond to triplet and singlet channels at λ=0. Full triangles

and full circles correspond to triplet and singlet channels at λ=0.

Figure 4 shows the two body distribution function with separated singlet and
triplet contributions (13), corresponding to the probability of finding two particles
at a given distance in either singlet or triplet total spin configuration.

Comparing the curves in presence and in absence of Rashba interaction it
is possible to notice how the first peaks of the singlet and triplet channels get
closer to each other when the SO interaction is considered, suggesting a decreased
antiferromagnetic character of the electron gas.

Conclusions

Extensions of the VMC and DMC methods capable of dealing with SO
interacting systems were presented together with the results of applications to
two different classes of physical systems.

Both algorithms are based on a stochastic integration over the electron
spin variables, thus implying a dynamical treatment of spin coordinates and,
consequently, slightly more complex and demanding codes. The additional
computational cost due to the use of a single Slater determinant for all the
electrons and of complex numbers is not seriously impairing the possibility of
performing simulations with a considerable number of electrons. The methods
here exposed represent highly accurate tools for the study of SO effects in a
variety of physical systems. These first encouraging applications will certainly
be followed by a more systematic study of the still largely unexplored field of the
phenomenology of SO interactions.
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Chapter 11

High-Energy Electron Scattering from Selected
Diatomics Using Monte Carlo Methods

S. A. Alexander,*,a Sumita Datta,b and R. L. Coldwellc

aDepartment of Physics, Southwestern University, Georgetown, Texas 78626
bDepartment of Theoretical Physics,

Indian Association for the Cultivation of Science,
2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India

cDepartment of Physics, University of Florida, Gainesville, Florida 32611
*E-mail: alexands@southwestern.edu

Using highly-accurate trial wavefunctions optimized by Filippi
and Umrigar (J. Chem. Phys. 1996, 105, 213), we compute
cross sections for the elastic and inelastic scattering of fast
electrons and X-rays by the diatomics Li2, Be2, B2, C2, N2,
O2 and F2. Our results are in good agreement with previous
calculations but previously observed discrepancies with
experiment remain.

Introduction

In the first Born approximation (1, 2) the cross sections for the elastic
scattering of high energy (>25 keV) electrons off a molecule is normally written
as

the Waller-Hartree cross section for the elastic scattering of X-rays is

© 2012 American Chemical Society
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the inelastic cross section is

and the form factor is defined as

Here σR is the Rutherford cross section, σT is the Thompson cross section,
q is the momentum transfer, RA is the distance from the center of mass of the
molecule to atom A, ZA is the atomic charge of atom A, and ri is the distance from
the center of mass of the molecule to electron i. The internuclear axis is aligned
with the polar (z) axis and the origin is at the center of mass. In such cases the
angular integration dΩq simplifies to d(cosθ) and this spherical integration for a
fixed value of q is normally done using Gauss-Legendre quadrature.

Equations 1-4 have been used to calculate scattering cross sections for a
number of molecules (see, for example, Refs. (3–14)). The wavefunctions in
these calculations almost always assume the Born-Oppenheimer approximation
near the molecular equilibrium because this choice usually produces reasonable
agreement with experiment.

Onemolecule that has received considerable attention is H2 because the results
from a variety of high-quality theoretical calculations (15–27) can be compared
with the results from several experiments (28–32). For this system a high-quality
Born-Oppenheimer wavefunction produces cross sections that exhibit small but
detectable deviations from experiment. In 1982 Kolos, Szalewicz and Monkhorst
used a set of 36-term correlated Gaussians to determine the ground state energy of
H2 as well as the elastic, inelastic and total cross sections at several internuclear
distances (20). They then calculated the rovibrationally-average of each cross
section and got excellent agreement with experiment.

In this paper we use Monte Carlo integration techniques to compute cross
sections for the elastic and inelastic scattering of fast electrons and X-rays by the
diatomics Li2, Be2, B2, C2, N2, O2 and F2. Because no analytic integrals need be
determined, these techniques enable us to evaluate all of these expectation values
using highly accurate, explicitly correlated wavefunctions. Where available we
will compare our results with those computed by other theoretical methods and
with experiment. Unless otherwise indicated, all values in this paper are given in
atomic units.

Calculations
Variational Monte Carlo is a method of computing the expectation value of an

operator
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and its standard deviation (i.e. statistical error)

sing Monte Carlo integration. Here ψ(xi) is the value of the trial wavefunction
at the Monte Carlo integration point xi and the weight function w(xi) is the
relative probability of choosing this point. The adjustable parameters in the trial
wavefunction are often optimized with respect to a functional, usually some
combination of the energy and its standard deviation (33, 34). The Monte Carlo
integration points used in these calculations are generated from a guiding function
that can also be optimized with respect to the standard deviation of the local
energy or any other property (35).

In Ref. (36) Filippi and Umrigar used the explicitly correlated
multideterminental trial wavefunction form

to calculate the energy of several homonuclear diatomics. Although these
wavefunctions have fewer than 100 adjustable parameters, we show in Table
1 that they clearly capture a large percentage of the correlation energy. These
values have been computed with 4096000 Monte Carlo integration points that
were generated from a guiding function that minimizes the variance in the local
energy of each molecule and a selection process that includes information about
the position of the nodes (37, 38). With the exception of the two largest diatomics
our energies are statistically equivalent to the variational results given in Ref.
(36). Despite our using the exact same wavefunctions as in that reference, we
found that our O2 energy is lower by almost three standard deviations and that
our F2 energy is higher by more than eight standard deviations. Extensive testing
has not revealed any error in our program so for the moment the cause of this
discrepancy remains unknown.

In Tables 2-4 we list the values obtained for the elastic electron, elastic
X-ray and inelastic scattering cross sections, respectively, using these same
wavefunctions. As in Ref. (27) we use from 6 to 22 Gaussian integration points
to rotationally average each cross section at the equilibrium geometry prior to
the Monte Carlo sampling. With this number of integration points we are able to
obtain converged cross sections to at least three significant figures with a small
statistical error in the last significant digit.
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Table 1. Comparison of our molecular energies with estimates of the Hartree-Fock energy limit and the Born-Oppenheimer energy
limit (both from Ref. (36)). Our energies were calculated using 4 096 000 Monte Carlo integration points and the wavefunctions in

Ref. (36). The number in the parenthesis is the statistical error. R is the internuclear distance. All values are in a.u.

System R Number of
determinants

Molecular Energy Hartree-Fock Energy Born-Oppenheimer Energy Correlation
Energy

Li2 5.051 5 -14.98844(6) -14.87152 -14.9945 95%

Be2 4.63 16 -29.3130(2) -29.13242 -29.33854(5) 88%

B2 3.005 11 -49.3603(4) -49.09088 -49.415(2) 83%

C2 2.3481 16 -75.8291(7) -75.40620 -75.923(5) 82%

N2 2.068 17 -109.437(1) -108.9928 -109.5423 81%

O2 2.282 7 -150.194(2) -149.6659 -150.3268 80%

F2 2.68 2 -199.351(7) -198.7701 -199.518925 78%
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Table 2. Elastic electron scattering cross sections (Eqn. 1) for several diatomics at select values of the momentum transfer variable,
q. These results have been computed using 4 096 000 Monte Carlo integration points. The number in the parenthesis is the

statistical error. All values are in a.u.

q Li2 Be2 B2 C2 N2 O2 F2

0.10 0.002287(5) 0.003097(6) 0.002469(4) 0.001644(3) 0.001570(3) 0.001454(4) 0.001131(4)

0.20 0.03217(7) 0.04458(9) 0.03736(6) 0.02545(4) 0.02443(5) 0.02260(6) 0.01753(5)

0.30 0.1326(3) 0.1900(4) 0.1727(2) 0.1222(2) 0.1182(3) 0.1096(3) 0.0849(2)

0.40 0.3196(6) 0.4756(9) 0.4822(7) 0.3591(5) 0.3512(7) 0.3264(8) 0.2524(7)

0.50 0.5677(9) 0.874(2) 1.009(1) 0.799(1) 0.792(2) 0.739(2) 0.571(2)

0.60 0.836(1) 1.317(2) 1.745(2) 1.484(2) 1.494(3) 1.400(3) 1.078(3)

0.70 1.103(1) 1.757(3) 2.634(3) 2.420(3) 2.480(5) 2.333(5) 1.795(5)

0.80 1.3778(9) 2.208(3) 3.594(4) 3.579(4) 3.737(7) 3.533(7) 2.715(7)

0.90 1.684(1) 2.746(3) 4.548(4) 4.903(5) 5.221(9) 4.96(1) 3.81(1)

1.00 2.041(1) 3.468(4) 5.445(5) 6.317(5) 6.86(1) 6.55(1) 5.05(1)

1.20 2.884(2) 5.628(4) 7.068(5) 9.139(6) 10.29(2) 9.94(2) 7.79(2)

1.40 3.677(2) 8.297(5) 8.786(6) 11.676(8) 13.49(2) 13.23(2) 10.84(3)

1.60 4.128(2) 10.384(6) 11.080(6) 13.958(9) 16.24(2) 16.34(3) 14.52(3)

1.80 4.200(2) 11.168(6) 14.121(7) 16.32(1) 18.76(2) 19.65(3) 19.49(3)

2.00 4.177(2) 10.886(6) 17.606(7) 19.17(1) 21.52(2) 23.80(3) 26.36(4)

2.20 4.444(2) 10.432(6) 20.919(8) 22.705(8) 25.00(2) 29.32(3) 35.27(5)

Continued on next page.

135

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
M

ay
 2

8,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
01

1

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



Table 2. (Continued). Elastic electron scattering cross sections (Eqn. 1) for several diatomics at select values of the momentum
transfer variable, q. These results have been computed using 4 096 000 Monte Carlo integration points. The number in the

parenthesis is the statistical error. All values are in a.u.

q Li2 Be2 B2 C2 N2 O2 F2

2.40 5.151(3) 10.620(6) 23.437(9) 26.844(7) 29.47(2) 36.39(4) 45.63(6)

2.60 6.073(3) 11.640(5) 24.79(1) 31.237(9) 34.92(2) 44.67(4) 56.28(7)

2.80 6.803(4) 13.018(6) 24.97(1) 35.39(1) 41.01(2) 53.44(5) 65.79(9)

3.00 7.125(4) 14.052(6) 24.31(1) 38.80(1) 47.21(2) 61.72(6) 73.0(1)

3.20 7.219(4) 14.354(7) 23.35(1) 41.12(1) 52.94(2) 68.64(6) 77.5(1)

3.40 7.493(4) 14.124(7) 22.64(1) 42.22(2) 57.64(2) 73.54(7) 79.6(1)

3.60 8.193(4) 13.969(7) 22.593(9) 42.19(2) 60.96(2) 76.20(7) 80.2(1)

3.80 9.160(5) 14.423(6) 23.360(9) 41.33(2) 62.75(2) 76.80(8) 80.6(1)

4.00 9.971(6) 15.542(6) 24.813(9) 40.05(2) 63.08(2) 75.92(7) 82.0(1)

4.20 10.334(6) 16.871(6) 26.61(1) 38.82(2) 62.23(3) 74.32(7) 85.0(1)

4.40 10.368(6) 17.810(6) 28.32(1) 38.03(2) 60.63(3) 72.82(7) 89.9(1)

4.60 10.484(6) 18.081(6) 29.55(1) 37.96(2) 58.74(3) 72.10(6) 95.9(1)

4.80 10.996(6) 17.938(6) 30.12(1) 38.71(2) 57.06(3) 72.62(6) 102.2(1)

5.00 11.827(6) 17.951(7) 30.04(1) 40.20(2) 55.96(3) 74.48(6) 107.5(1)

5.20 12.578(6) 18.551(8) 29.58(1) 42.21(2) 55.73(3) 77.49(6) 111.0(1)

5.40 12.912(6) 19.691(8) 29.11(1) 44.42(2) 56.45(3) 81.22(6) 112.4(1)
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q Li2 Be2 B2 C2 N2 O2 F2

5.60 12.867(6) 20.887(8) 28.99(1) 46.49(2) 58.08(2) 85.08(6) 111.7(1)

5.80 12.813(6) 21.613(8) 29.45(1) 48.11(2) 60.39(2) 88.47(6) 109.7(1)

6.00 13.103(7) 21.712(8) 30.53(1) 49.08(2) 63.09(2) 90.91(6) 107.5(1)
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Table 3. Elastic X-ray scattering cross sections (Eqn. 2) for several diatomics at select values of the momentum transfer variable,
q. These results have been computed using 4 096 000 Monte Carlo integration points. The number in the parenthesis is the

statistical error. All values are in a.u.

q Li2 Be2 B2 C2 N2 O2 F2

0.10 34.6952(7) 61.9925(9) 98.2641(7) 142.3755(7) 194.199(1) 253.679(1) 320.867(2)

0.20 31.119(2) 56.413(3) 93.275(3) 137.630(3) 188.917(5) 246.860(6) 311.669(7)

0.30 26.130(4) 48.421(6) 85.636(5) 130.127(6) 180.49(1) 235.96(1) 296.99(1)

0.40 20.742(5) 39.482(8) 76.200(8) 120.417(9) 169.45(2) 221.62(2) 277.72(2)

0.50 15.796(5) 30.923(9) 65.89(1) 109.16(1) 156.43(2) 204.66(3) 255.01(3)

0.60 11.790(4) 23.638(9) 55.57(1) 97.06(1) 142.13(3) 185.95(4) 230.11(4)

0.70 8.899(3) 18.020(8) 45.88(1) 84.76(2) 127.25(3) 166.39(4) 204.28(5)

0.80 7.065(3) 14.052(8) 37.27(1) 72.82(2) 112.38(4) 146.81(5) 178.72(6)

0.90 6.106(2) 11.472(7) 29.96(1) 61.68(2) 98.06(4) 127.91(5) 154.44(7)

1.00 5.784(2) 9.928(6) 24.00(1) 51.62(2) 84.67(4) 110.26(5) 132.22(7)

1.20 6.090(2) 8.639(5) 15.707(8) 35.29(1) 61.63(4) 80.08(5) 95.84(7)

1.40 6.416(2) 8.212(5) 11.119(7) 23.91(1) 44.07(3) 57.58(5) 70.99(6)

1.60 6.048(2) 7.683(5) 8.844(6) 16.64(1) 31.58(3) 42.20(4) 56.11(6)

1.80 5.148(2) 6.814(5) 7.827(5) 12.331(9) 23.14(2) 32.41(3) 48.12(5)

2.00 4.265(2) 5.800(4) 7.389(5) 9.943(7) 17.66(2) 26.44(3) 43.84(4)

2.20 3.766(2) 4.985(4) 7.129(4) 8.695(5) 14.16(2) 22.79(3) 40.80(5)
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q Li2 Be2 B2 C2 N2 O2 F2

2.40 3.600(2) 4.577(4) 6.832(5) 8.054(4) 11.95(1) 20.37(3) 37.58(5)

2.60 3.475(3) 4.518(3) 6.411(5) 7.688(4) 10.51(1) 18.50(3) 33.65(6)

2.80 3.175(3) 4.549(3) 5.869(5) 7.401(5) 9.54(1) 16.80(3) 29.14(6)

3.00 2.711(3) 4.420(4) 5.271(5) 7.089(5) 8.83(1) 15.14(3) 24.43(6)

3.20 2.243(2) 4.060(4) 4.706(5) 6.705(6) 8.253(9) 13.48(3) 20.00(6)

3.40 1.906(2) 3.582(4) 4.254(4) 6.246(6) 7.734(8) 11.85(3) 16.18(5)

3.60 1.710(2) 3.164(3) 3.955(4) 5.735(6) 7.231(7) 10.32(3) 13.18(5)

3.80 1.571(2) 2.904(3) 3.802(4) 5.210(6) 6.726(7) 8.93(3) 11.01(4)

4.00 1.408(2) 2.772(2) 3.746(4) 4.715(6) 6.217(8) 7.73(2) 9.59(4)

4.20 1.205(2) 2.659(2) 3.718(4) 4.288(6) 5.713(8) 6.76(2) 8.74(4)

4.40 1.001(2) 2.477(2) 3.653(4) 3.955(6) 5.234(8) 6.01(2) 8.25(3)

4.60 0.842(2) 2.217(2) 3.513(4) 3.724(6) 4.800(9) 5.48(2) 7.95(3)

4.80 0.737(1) 1.938(2) 3.293(3) 3.586(6) 4.428(8) 5.13(2) 7.69(3)

5.00 0.662(1) 1.708(2) 3.017(3) 3.517(5) 4.131(8) 4.94(1) 7.37(3)

5.20 0.591(1) 1.554(2) 2.724(3) 3.483(5) 3.911(8) 4.84(1) 6.96(3)

5.40 0.510(1) 1.451(2) 2.455(3) 3.452(5) 3.763(7) 4.80(1) 6.46(3)

5.60 0.429(1) 1.355(2) 2.236(3) 3.396(5) 3.672(6) 4.77(1) 5.92(3)

5.80 0.361(1) 1.235(2) 2.076(3) 3.298(5) 3.621(6) 4.71(1) 5.39(3)

6.00 0.313(1) 1.093(2) 1.964(3) 3.151(5) 3.588(5) 4.61(1) 4.93(3)
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Table 4. Inelastic scattering cross sections (Eqn. 3) for several diatomics at select values of the momentum transfer variable, q.
These results have been computed using 4 096 000 Monte Carlo integration points. The number in the parenthesis is the statistical

error. All values are in a.u.

q Li2 Be2 B2 C2 N2 O2 F2

0.10 0.10211(8) 0.09027(9) 0.08278(8) 0.06384(8) 0.05037(9) 0.0493(1) 0.0445(1)

0.20 0.3776(3) 0.3444(3) 0.3180(3) 0.2495(3) 0.1986(4) 0.1946(5) 0.1759(5)

0.30 0.7515(4) 0.7196(6) 0.6710(5) 0.5404(6) 0.4363(8) 0.428(1) 0.388(1)

0.40 1.1427(5) 1.1632(9) 1.0977(8) 0.913(1) 0.751(1) 0.738(2) 0.672(2)

0.50 1.4944(6) 1.629(1) 1.557(1) 1.341(1) 1.128(2) 1.111(3) 1.015(2)

0.60 1.7830(8) 2.084(1) 2.018(1) 1.798(2) 1.550(2) 1.531(3) 1.406(3)

0.70 2.0094(9) 2.510(2) 2.466(2) 2.265(2) 2.003(3) 1.984(4) 1.833(4)

0.80 2.187(1) 2.897(2) 2.893(2) 2.726(3) 2.473(3) 2.458(5) 2.284(5)

0.90 2.330(1) 3.239(2) 3.300(2) 3.174(3) 2.949(4) 2.941(5) 2.749(6)

1.00 2.454(1) 3.535(2) 3.688(2) 3.605(4) 3.422(4) 3.427(6) 3.222(7)

1.20 2.678(1) 3.996(2) 4.406(3) 4.416(4) 4.342(4) 4.383(7) 4.170(9)

1.40 2.901(1) 4.317(3) 5.029(3) 5.166(4) 5.207(4) 5.300(8) 5.10(1)

1.60 3.129(1) 4.552(3) 5.542(3) 5.855(4) 6.009(5) 6.170(8) 6.01(1)

1.80 3.361(1) 4.746(2) 5.942(4) 6.474(5) 6.743(6) 6.989(9) 6.89(1)

2.00 3.592(1) 4.925(2) 6.249(4) 7.009(6) 7.409(7) 7.75(1) 7.73(1)

2.20 3.816(1) 5.096(2) 6.491(4) 7.456(6) 8.004(7) 8.46(1) 8.53(1)
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q Li2 Be2 B2 C2 N2 O2 F2

2.40 4.028(1) 5.265(2) 6.691(4) 7.820(5) 8.528(8) 9.11(1) 9.28(2)

2.60 4.227(1) 5.434(2) 6.866(4) 8.113(5) 8.982(8) 9.69(1) 9.98(2)

2.80 4.413(1) 5.601(2) 7.027(4) 8.353(5) 9.372(8) 10.20(2) 10.63(2)

3.00 4.586(1) 5.765(2) 7.178(4) 8.555(5) 9.703(9) 10.66(2) 11.22(2)

3.20 4.743(2) 5.924(2) 7.321(3) 8.729(5) 9.984(9) 11.05(2) 11.75(2)

3.40 4.885(2) 6.077(2) 7.458(3) 8.886(5) 10.22(1) 11.39(2) 12.23(2)

3.60 5.014(2) 6.224(2) 7.591(2) 9.029(5) 10.43(1) 11.68(2) 12.64(2)

3.80 5.129(1) 6.364(2) 7.721(2) 9.163(5) 10.612(9) 11.93(2) 13.00(2)

4.00 5.232(1) 6.495(3) 7.847(3) 9.290(5) 10.772(9) 12.15(2) 13.31(2)

4.20 5.323(1) 6.619(2) 7.972(3) 9.414(5) 10.916(9) 12.35(2) 13.58(2)

4.40 5.404(1) 6.734(2) 8.094(4) 9.536(6) 11.047(9) 12.52(2) 13.81(2)

4.60 5.475(1) 6.841(2) 8.212(4) 9.654(6) 11.169(9) 12.67(2) 14.01(2)

4.80 5.537(1) 6.942(2) 8.325(4) 9.769(6) 11.284(8) 12.80(2) 14.19(2)

5.00 5.593(1) 7.035(2) 8.433(4) 9.880(6) 11.393(8) 12.93(2) 14.35(2)

5.20 5.642(1) 7.122(2) 8.535(3) 9.986(6) 11.499(8) 13.04(2) 14.49(2)

5.40 5.685(1) 7.201(2) 8.633(3) 10.088(6) 11.603(8) 13.15(2) 14.63(2)

5.60 5.722(2) 7.275(2) 8.726(3) 10.186(6) 11.703(8) 13.25(2) 14.75(2)

5.80 5.755(2) 7.341(2) 8.813(3) 10.282(6) 11.801(8) 13.35(1) 14.87(2)

6.00 5.784(2) 7.402(2) 8.895(3) 10.375(6) 11.895(8) 13.45(1) 14.97(2)
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Of the seven diatomics examined here, the cross sections of N2, O2 and F2
have previously been studied using other theoretical methods (3, 7, 8, 10–13). A
detailed comparison of our results with these earlier studies is greatly complicated
by the fact that the cross sections produced by these other calculations are almost
always presented as difference functions in graphical form. Fortunately in Ref.
(13) Hoffmeyer et al. list the values of their MR-SDCI cross sections in tables so
we were able to confirm that all of our values are in very good agreement with
theirs. For N2 all of our elastic electron scattering results are smaller than those
in Ref. (13) (the percentage difference between these two calculations is 2.5%
or less). In contrast, all of our X-ray scattering results are slightly larger, but the
percentage difference is less than 1%. When we compare our inelastic results with
those of Hoffmeyer et al. we find that they are larger in the region 0.1 ≤ q ≤ 2.0
(where the percentage difference varies between 1.0% and 4.9%) and smaller in
the region 2.2 ≤ q ≤ 6.0 (where the percentage difference is 1.5% or less). For O2
our elastic electron scattering results are slightly larger in the region 0.1 ≤ q ≤ 1.6
and slightly smaller in the region 1.8 ≤ q ≤ 6.0. The percentage difference in all
these calculations is less than 1%. When we compare our X-ray scattering results
with those in Ref. (13) we find that they are slightly smaller in the region 0.1 ≤ q
≤ 1.6 (where the percent difference is less than 1%) and larger in the region 1.8 ≤
q ≤ 6.0 (where the percentage difference is 1.2% or less). Similarly our inelastic
scattering results are larger in the region 0.1 ≤ q ≤ 2.0 (where the percent difference
varies between 1.0% and 3.8%) and smaller in the region 2.2 ≤ q ≤ 6.0 (where the
percentage difference is 1.5% or less).

In Figures 1 and 3 of Ref. (13), Hoffmeyer et al. plot their elastic electron and
inelastic difference curves for N2 and O2 alongside those from earlier theoretical
calculations (10–12) and experiment (39–42). They attribute the small, but visible
differences between their curves and those produced by the other computational
studies to their use of a modest Sadlej basis. This reasonably good agreement
between the different theoretical methods (and by extension with our Monte Carlo
results) is in stark contrast to the larger discrepancies between the computational
difference curves and the experimental curves. Hoffmeyer et al. attribute these
discrepancies to either experimental errors (and point out that the experimental
measurements for N2 in Refs. (41) and (42) disagree) or to the neglect of higher-
order Born corrections (13). We concur with this assessment and believe that the
reason for the differences between theory and experimental will remain unresolved
until such time as more accurate experimental and/or theoretical determinations
are performed on these diatomics.

Conclusions

Accurate molecular cross sections require accurate molecular wavefunctions.
For such calculations Meyer and coworkers recommend that the basis set should
approach the Hartree-Fock limit (with up to g Gaussian-type orbitals), all electrons
should be correlated and all singly and doubly excited configurations should be
included as well as a selection of triply and quadruply excited configurations
(12). The explicitly-correlated wavefunctions defined in Ref. (36) have a very
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different form than those previously used to calculate molecular cross sections.
They automatically include the effect of all excitations and are able to capture
a large percentage of the correlation energy with roughly a hundred adjustable
parameters. Despite these differences the cross sections computed in this study
are in generally good agreement with earlier calculations. This suggests that
Monte Carlo methods and explicitly-correlated wavefunctions can play a useful
role in calculating the scattering cross sections of larger molecules.
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Chapter 12

Studying Properties of Floppy Molecules Using
Diffusion Monte Carlo

Anne B. McCoy,* Charlotte E. Hinkle, and Andrew S. Petit

Department of Chemistry, The Ohio State University,
100 W. 18th Ave., Columbus, Ohio 43210
*E-mail: mccoy@chemistry.ohio-state.edu

Recent extensions to the Diffusion Monte Carlo approach are
presented and discussed in the context of polyatomic molecules
that undergo large amplitude vibrational motions, even in their
ground states. The methods specifically involve the evaluation
of rotationally excited state energies and wave functions, and
are discussed in the context of fixed-node studies of H3O+ and
CH5+.

Introduction

An area in which Diffusion Quantum Monte Carlo (DMC) provides great
promise and one for which the methodology has not been fully exploited is in
studies of molecules or clusters that contain one or more vibrational degrees of
freedom that sample large regions of the potential surface even in the vibrational
ground state (1–3). The advantage of using DMC to study these systems, that is not
realized in electronic structure calculations, comes from the fact that the analysis of
the results of calculations of the bosonic (nodeless) ground state provides insights
into properties of the molecules of interest. While most of the contributions to
this volume focus on Quantum Monte Carlo approaches for electronic structure
calculations, several have used DMC approaches to study rotation-vibration states.
Initially this line of investigation focused on hydrogen bonded clusters (1–8). In
many of these studies, the intramolecular degrees of freedom were kept fixed, and
the studies focused on the intermolecular degrees of freedom (9). An attractive
feature of these systems was the availability of potential surfaces, which could be
readily evaluated for dimer systems and extended to larger clusters using sums of
pair-wise and perhaps higher order interactions.

© 2012 American Chemical Society
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Over the past decade, interest in using DMC in studies of vibrational
properties has moved from molecular clusters to protonated systems, like CH5+

(2, 6, 7, 10) and protonated water clusters (2, 6, 11, 12). These are systems
that include several large amplitude vibrations and in which many of the 3N-6
vibrational degrees of freedom are strongly coupled. Often the ground state
is delocalized over multiple minima on the potential surface with significant
amplitude in the region of the transition states that connect these minima. This
type of system is difficult to treat by conventional methods since most of these
approaches require a well-defined reference structure.

On the other hand, the delocalization of the ground state wave function along
the vibrational degrees of freedom is not nearly as extensive as is seen in electronic
structure problems. In the most extreme case of CH5+, the ground state wave
function has similar amplitude in all 120 equivalent minima and in the region of
the 180 low-energy saddle points that connect these minima (10). This would lead
one to expect that a particle on a sphere basis might be effective for describing
the vibrational dynamics in CH5+ (13). On the other hand, while the amplitudes
of the displacements sampled in the coordinates that interconnect the minima are
large even in the vibrational ground state, the overall envelope of the CH stretch
region of the spectrum is well-described by the average of the harmonic spectra
obtained at these 300 stationary points (14). The above characteristics of CH5+,
which make it difficult to treat by conventional methods also make it well-suited
for studies based on Diffusion Monte Carlo approaches.

Two sets of challenges are posed by these systems. First, unlike molecular
clusters, the potential needs to be separately constructed for each molecule of
interest. Second, DMC, in its purest form, provides a method for obtaining the
zero-point energy and a Monte Carlo sampling of the ground state wave function.
How can a ground state method be used to provide insights into molecules for
which much of our understanding of their properties is based on spectroscopic and
kinetic studies, which sample rotationally and vibrationally excited states?

The first challenge has been overcome, at least in part, through sophisticated
methodologies for obtaining multi-dimensional potential surfaces from numerous
electronic energies, and in some cases gradients and Hessians (15–17). All of this
required data can be generated by any one of a number of commonly available
electronic structure programs, and can be evaluated at a variety of levels of theory,
depending on the size of the system and the level of accuracy that is desired. With
this information in hand, Braams, Bowman and their co-workers fit the electronic
energies to high-order polynomial expansions in functions of the atom-atom
distances. The fit is constrained to ensure that the potential energy is not affected
by exchange of identical particles (17). This is the form of the potentials used
in the studies of CH5+ (18) and H3O+ (19), described below. In an alternative
approach, Collins, Jordan and co-workers GROW their potential by generating a
series of quadratic expansions of the potential in terms of inverse bond-lengths
and using Shephard Interpolation to obtain electronic energies at intermediate
points (15, 16). This latter approach is ideally suited for DMC studies, since,
while the interpolation can lead to artificial wiggles in the potential, the statistical
sampling of the wave function, generated by the DMC approach, tends to be
insensitive to these small oscillations.
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The challenge of evaluating excited states using a fundamentally ground
state method is more fundamental. This has been a focus of our research over
the past decade. Ways in which we have addressed some of these questions is
the focus of the present article. In the previous volume of this series (20), we
outlined our use of the fixed-node treatment, as described by Anderson (21, 22)
to calculate vibrational excited states. In the present article we turn our attention
to the calculation of rotationally excited states. As mentioned above, the focus
of this work will be on systems that display large amplitude excursions from
the equilibrium structure, even in the rotational and vibrational ground state,
specifically H3O+ and CH5+.

General Background

Diffusion Monte Carlo approaches and their applications to a variety of
systems are described throughout this volume. In our work we use the simplest
form of DMC. We base our implementation on the two early studies of Anderson
(21)(22). Specifically, we take advantage of the fact that when the time-dependent
Schrödinger equation is expressed in terms of an imaginary time variable, τ
= it/ħ, the long-time solution converges to the lowest energy solution to the
time-independent Schrödinger equation, and the amplitude of the wave function
decays with a rate that is proportional to the ground state energy. If the wave
function that is being propagated is expressed by an ensemble of δ-functions (or
walkers), the positions of which are allowed to move in space under the influence
of the imaginary-time time-dependent Schrodinger equation, the resulting
equilibrium distribution of walkers represents a Monte-Carlo sampling of the
ground state wave function. A more detailed description of this approach and our
implementation may be found in our earlier publications (2, 23–25).

As described in Refs. (20) and (22), one way to generate excited states is
through a fixed-node treatment. Here we exploit the fact that if the nodal surface
can be described by a simple functional form, the wave function in the vicinity
of the nodal surface has similar properties to a wave function in the vicinity of
an infinite potential barrier. As such, within our implementation of the fixed-node
treatment, we divide configuration space into two parts using the nodal surface as
the dividing surface. The two parts correspond to the regions in which the wave
function has positive and negative amplitude. The “true” potential surface is used
in one region, while the potential is made to be infinite in the other. Because the
amplitude of the wave function is zero in regions of configuration space where the
potential is infinite, any walker that moves into the region of configuration space
where the potential is infinite is removed from the simulation. In practice, when
the nodal surfaces divide the wave function into three or more parts, we choose to
treat each region separately.

Since we use finite time steps in the simulation, typically 1-10 atomic units,
there is a finite probability that a walker that appears to have remained on the
same side of the dividing surface could have crossed over to the forbidden region
and back within a single time step. If the trajectory had been divided into smaller
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time increments, this walker would have been removed from the simulation. A
statistical measure of the probability of this occurring, based on the distance of
the walker from the dividing surface before and after a time step in the simulation,
was developed by Anderson (22), and this recrossing correction is included in
most of our simulations. We have demonstrated the effectiveness of this approach
for vibrational problems through direct comparison of DMC calculations of
vibrationally excited states to variational results obtained for the same surfaces
for Ne2OH, Ne2SH (26) and H3O2− (12).

Direct Evaluation of Rotationally Excited States
The approach described above can be readily extended to rotationally excited

states since all that is required is knowledge of the functional form for the
nodal surfaces, and, if the recrossing correction is to be used, an expression for
the reduced mass associated with motion perpendicular to the nodal surface.
The solutions to the rotational Hamiltonian for a rigid molecular system are
well-known, and are expressed as functions of the three Euler angles that relate
the molecule- and space-fixed Cartesian coordinate systems. Specifically, if the
rotational Hamiltonian is expressed as

analytic solutions exist in three cases:

• When J=0, Erot = 0 and the wave functions are isotropic.
• When J=1, there are three solutions with energies of A+B, A+C and

B+C. The corresponding wave functions have analytical solutions that
are independent of the values of A, B, and C.

• For symmetric (or spherical) tops with higher values of J, the wave
functions can be expressed by the Tesseral harmonics, which are the set
of real functions that are eigenfunctions of Eq. (1) when either A = B or
B = C.

With the excpetion of the J = 0 case, the definitions of the rotational wave
functions require definitions for the arguments of the Tesseral harmonics, θ and χ,
which in turn require an embedding of a body-fixed axis system.

At first thought the embedding of a body-fixed axis system in a highly
fluxional molecule seems like an insurmountable problem. In earlier studies of
CH5+ (27), NenOH (28) and H5O2+ (2), we have demonstrated that application
of the Eckart conditions (29) through a series of linear algebra manipulations
provides a robust internal coordinate system that minimizes the presence of
rotation-vibration coupling. The procedure is relatively straight-forward and can
be easily applied to the DMC wave functions.

To start, we choose a reference geometry, translate it so the center of mass is
at the origin and rotate the molecule to a principle axis frame by ensuring that the
moment of inertia tensor is diagonal in this coordinate system. The 3N Cartesian
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coordinates that define the reference geometry are denoted by the vectors .
Following Louck and Galbraith (30), for an arbitrary structure denoted by a set

of N vectors we define a set of vectors

where the α and β indices represent the Cartesian components of the vectors (x,y,z).
From these we generate a set of unit vectors

where

These vectors provide the three coordinate axes in the Eckart frame so that
the Cartesian coordinates of the atoms in the Eckart frame are

One of the most rigorous tests of Eckart embedding was a study of
vibrationally averaged rotational constants for CH5+ and its deuterated analogues

(27). In that study, we calculated the values of , , and for the
ground state of these ions by averaging the values of the elements of the inverse
moment of inertia tensor, evaluated using an Eckart frame defined using the
procedure described above. We showed that we obtained the same values for
the rotational constants independent of the reference geometry used to define the
body-fixed axis system. There were examples where this broke down, but they
corresponded to using stationary point structures that were not sampled by the
ground state wave function as the reference geometry.

With the embedding in hand, we use standard fixed-node approaches in which
we assume that the nodal structure is defined by the solutions to the Hamiltonian
for a rigid rotor. Specifically, the nodes are placed at the zero’s of the Tesseral
Harmonics:

for chosen values of J and K. For simplicity, we require that M=0, although
calculations were performed for J=1 and non-zero values of M (24). The values

149

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
M

ay
 2

8,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
01

2

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



of θ and χ used to define these functions (and the nodes) are extracted from the
Eckart rotation matrix (f) in Eq. (3). Specifically

Before introducing the nodal surfaces, we run a long equilibration simulation
for the J = 0 wave function. This simulation needs to be propagated for sufficiently
long times to ensure that the wave function is isotropic.

The final ingredient in the DMC simulations is the introduction of the
recrossing correction. Specifically, the probability of a walker crossing and then
recrossing a nodal surface within a single time step is given by

where d(τ) and d(τ+Δτ) are the perpendicular distances of the walker from the
nodal surface at the start and end of the time step (22). In our studies on H3O+, we
introduced the following definitions for the effective mass for a node in θ

and in χ

where I(τ) is the instantaneous moment of inertia tensor for a given walker
evaluated in the Eckart frame. Based on our studies on H3O+, we found that this
correction does not affect the calculated energies for the J=1 levels, and, as a
result, it was not used in the calculations involving CH5+ where the definitions of
the separate rotational constants are less straight-forward (24).

Applications to H3O+ and CH5+

The approach, described above, has been recently applied to studies of
H3O+ (24), CH5+ (25), and their deuterated analogues. One challenge that we
encountered results from the fact that both systems explore broad regions of the
potential surface. Specifically, consider the equilibrium structures of these two
molecules, shown in the left column of Figure 1, as well as the low-energy saddle
points, shown to the right of the corresponding minimum energy structure. In
the case of CH5+, the structures on the left and right each represent one of 120
equivalent structures, while the one in the center represents one of 60 equivalent
structures. The symmetry is lower for H3O+, but here there are two equivalent
minima on the potential separated by a saddle point.
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Figure 1. Equilibrium (left) and low-energy transition state (center and right)
structures of CH5+ (top) and H3O+ (bottom).

Without doing any calculations we can anticipate the delocalization of the
ground state wave function by comparing the energies of these saddle points,
relative to the potential minimum, to the harmonic zero-point energy associated
with the mode that connects the minimum to the saddle point geometry. For
CH5+, the energies of the two saddle points are 29.1 and 340.7 cm-1 above the
global minimum, while the harmonic zero-point energy in the associated modes
are 99.9 and 419.7 cm-1 as determined from the potential surface of Jin, Braams
and Bowman (18). For H3O+, the energy of the saddle point is 690 cm-1 while the
zero-point energy in the out-of-plane vibration is 445.5 cm-1 (19). In both cases
the zero-point energy is close to or larger than the energy of the corresponding
saddle point.

If we analyze the fully anharmonic ground state probability amplitude
obtained from DMC, we find that there is significant amplitude in all of the
equivalent minima and at the saddle points that connect the minima (10, 24),
as was anticipated in the harmonic analysis. This behavior is also reflected in
the lowest energy vibrationally excited state in both systems being substantially
non-zero (46.4 cm-1 for H3O+ (24) and 10.4 cm-1 for CH5+ (31)) but considerably
smaller than the lowest calculated harmonic frequency of 891 cm-1 in H3O+ (19)
and 199.9 cm-1 in CH5+ (18). Such behavior is indicative of a sizable tunneling
splitting of the ground state and is consistent with the ground state wave function
having amplitude at the saddle point as well as the minimum energy structures.

This large delocalization of the ground state wave function, on its own, does
not cause any problems for the evaluation of rotationally excited states. On the
other hand, if we identify the atoms in each of these ions, as is done when we
imposed a numbering scheme in Eqs. (2) to (5), the equilibrium structures are
chiral, and, based on the above discussion, the ground state wave function has
amplitude along the path that connects sets of chiral pairs. The reason this becomes
a complicating factor in evaluating rotationally excited states is due to the fact
that when a walker samples certain regions of configuration space, the algorithm
for the Eckart embedding not only rotates the molecule, it also inverts the axis
system. This is more easily seen for H3O+, and is illustrated in Figure 2. The top
two diagrams represent the reference structure for H3O+ (left) and the structure that
one would obtain with excitation of the out-of-plane (umbrella) mode. No rotation
of the axis system will bring the structure on the right close to that on the left. If
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instead we first inverted the axis system then performed a 180° rotation (following
the arrows through the intermediate structure), we return to the structure on the
left. Numerically, the algorithm that we use for the Eckart embedding generates
a rotation matrix that has a determinant of –1, and we cannot use this matrix to
determine the Euler angles used to define the nodal surfaces. While the problem
is easily identified, the solution is less obvious. The only one we have found to
be uniformly effective is to use a reference structure that does not contain a chiral
center. This can be achieved by using the transition state structure for H3O+, shown
in the lower right of Figure 1. However, there are no such achiral, energetically
accessible stationary point structures for CH5+.

Figure 2. An illustration of the relationship between “inversion” of H3O+ and an
inversion of the axis system.

Energies for CH5+ and H3O+, calculated by this method, for J=0 and J=1
are reported in Table I. For comparison, we also report the energies that are
obtained for J=0 when we remove all inverted walkers. To differentiate these
states, we denote this state with a superscripted (-) and the ground state with a
(+). For comparison, results performed using variational approaches with the
same potential surface are also reported (19, 31). Calculations for the deuterated
analogues of both species have been performed and the results can be found in the
original publications (24, 25). As indicated by the notation, and discussed above,
since there is no achiral reference structure that could be chosen for calculations
of CH5+, the rotationally excited states for CH5+ have a vibrational wave function
that is antisymmetric with respect to inversion (25).

We have also performed calculations for higher J levels in H3O+ (24), and,
more recently on H3+ and D3+. Generally the agreement remains good at all values
of J and we are investigating whether the origins of any break-downs that are
observed can be attributed to problems with the model that we employ for defining
the nodal surfaces or rotation-vibration interactions that are not well-described by
this model. While the agreement is much less good at J=10 than for J < 6, to our
knowledge these systems have more nodes in the rotation-vibration wave function
than any previous fixed-node studies of nuclear dynamics.
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Table I. J = 0 and 1 energies for H3O+ (24) and CH5+ (25) calculated using
DMC are compared to previously reported energies obtained using the same

potential surfaces

Molecule Statea DMC (cm-1) Variationalb (cm-1)

H3O+ 7452±2 7450.6

44±5 46.4

23±4 22.3

20±3 17.4

19±3 17.4

CH5+ 10916±5 10926.5

11±2 10.4

19±1

20±1

19±1

a The states are labeled as , where and correspond to
the lower and upper members of the ground state tunneling doublet respectively and the
subscript ± provide the parity of the rotational level. b References (19) and (31).

Concluding Remarks

In this paper, we discuss a method for describing rotationally excited states
of molecules that undergo large amplitude motions that was recently developed in
our group. The above approach has several advantages over correlation function-
based approaches, previously employed by Whaley and Roy and their co-workers
to study rotationally excited states of molecules embedded in helium droplets (4,
5). Most important, within the context of floppy molecular systems, the present
approach allows for a non-rigid molecule. Further, in contrast to approaches that
are based on linear response theory, we are able to obtain the probability amplitude
associated with the excited states in a straightforward manner. We are presently
working to further characterize the properties of this algorithm through studies of
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H3+ and D3+ and NH3 for which rotation vibration energies for J > 5 have been
evaluated using the same potential surfaces.
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Chapter 13

Quantum Monte Carlo Study of the Binding of
a Positron to Polar Molecules

Yukiumi Kita* and Masanori Tachikawa

Quantum Chemistry Division, Yokohama-city University, 22-2 Seto,
Kanazawa-ku, Yokohama 236-0027, Japan

*E-mail: ykita@yokohama-cu.ac.jp

We report the theoretical investigations of the positron binding
to alkali-metal hydrides (LiH, NaH, and KH) and hydrogen
cyanide molecule (HCN) using quantum Monte Carlo (QMC)
methods. We have obtained the lowest variational energies
of positron-attached NaH, KH, and HCN systems so far, and
larger positron affinities of these molecules than the theoretical
predictions by previous configuration interaction calculations.
Our study also confirms the strong correlation between the
positron affinity and dipole moment of alkali-metal hydrides
and the binding of a positron in the electrostatic field of the HCN
molecule. In this report, we have described our methodology for
analyzing a positron-attached molecule (positronic compound)
using QMC techniques, and have reviewed our recent results
of QMC calculations of the positron binding to these polar
molecules.

1. Introduction

The positron (e+) is the anti-particle of the electron (e−) and therefore has
the same mass and spin, but the opposite charge. Positrons injected into a
liquid or solid induce processes such as ionization or electronic excitation of
atoms/molecules, the formation of a meta-stable bound state of a positron and
an electron (positronium or Ps), and the formation of positronic compounds
which are bound states of a positron and atoms or molecules, etc., before the
positron undergoes pair-annihilation with an electron (1, 2). A number of positron
annihilation experiments on molecular species have recently been reported by

© 2012 American Chemical Society
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Surko and co-workers (3–5). They have measured positron binding energies
(positron affinity, PA) for many molecular species such as alkanes and aromatic
molecules, etc., and have discussed the relationship between the positron binding
and the properties of the parent molecule. However, since it is difficult to directly
measure the properties of positronic compounds such as the electronic/positronic
structures, the stable geometry, etc., theoretical calculations for positronic
compounds have an important role (6–15).

Theoretical analyses of positronic compounds have shown that an accurate
description of correlation effects, especially electron-positron correlation, is
indispensable for obtaining reliable values of the PA and other properties (6–15).
For example, Hartree-Fock (HF) theory gives too small a binding energy for
Ps and too small a PA for even the simplest positronic compound, [H-;e+] (9).
Conventional quantum chemical approaches based on ab initio molecular orbital
methods such as many-body perturbation theory (10) and configuration interaction
(CI) methods (9) etc., are frequently used to describe correlation in positronic
compounds. It is, however, desirable for the electronic and positronic wave
functions to be constructed within a more sophisticated theoretical framework,
because even full-CI calculations using H-centered Gaussian type basis functions
have not given accurate results for the [H-;e+] system (9).

Two accurate theoretical approaches are known for studying positronic
compounds: variational calculations with explicitly correlated Gaussian (ECG)
wave functions (11–13) and ab initio quantum Monte Carlo (QMC) calculations
(14, 15). Although variational calculations with ECG wave functions have given
the most accurate results obtained to date for small systems, this method cannot
in practice be applied to large systems because the required computational effort
grows very rapidly with the number of particles. Two types of QMC approach are
typically used: the variational Monte Carlo (VMC) and diffusion Monte Carlo
(DMC) methods (16). The DMC method is also variational in the sense that the
DMC energy is always higher than or equal to the exact energy and, in addition,
it is always lower than or equal to the VMC energy calculated with the same trial
wave function. The cost of QMC calculations grows much less rapidly with the
number of particles than in CI and ECG methods, and they are therefore well
suited for applications to positronic compounds.

Theoretical work by Crawford (17) suggests that a molecule with a dipole
moment larger than a critical value of 1.625 Debye (D) is able to bind either an
e− or an e+ in its electrostatic field. This estimate is based on the long-range form
of the electrostatic potential of a dipole. Weakly bound positronic molecular
states have large positronic orbitals and the short-range repulsion between the
positron and nuclei does not necessarily prevent the formation of a positronic
molecular complex. Recently, Chojnacki and Strasburger have theoretically
analyzed the positron binding to the hydrogen cyanide (HCN) molecule, which
has the permanent dipole moment of 3.3 D, using the CI method with single- and
double-particles excited configurations (18). Buenker et al. have also analyzed
positron binding to the alkali-metal hydrides, XH (X=Li, Na, K, etc.), using an
ab initio multireference double-excitation configuration interaction (MRD-CI)
method (19, 20). Although they obtained PAs for these molecules, which are
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larger than the HF values, the theoretical accuracy is insufficient due to the small
configuration space.

Recently, we have investigated the positron binding to these molecular
systems, that is, hydrogen cyanide molecule and alkali-metal hydrides (LiH, NaH,
and KH) using VMC and DMC methods (21, 22). In these theoretical analyses,
we obtained the lowest variational energies of positronic HCN, NaH, and KH
systems so far, and larger positron affinities of these molecules than the previous
theoretical predictions by the CI methods. In this report, we have described our
methodology for analyzing a positron-attached molecule (positronic compound)
using QMC techniques, and have reviewed our recent results of QMC calculations
of the positron binding to these polar molecules.

At the end of this section, we note that the atomic units are used throughout

this report ( , , ).

2. Method

2.1. Non-Relativistic Hamiltonian of a Positronic Compound

The large mass ratios justify the use of the Born-Oppenheimer (BO)
approximation to separate the nuclear motion from the electronic and positronic
motions. The non-relativistic Hamiltonian operator for a molecular system
containing Ne electrons, Nnuc nuclei, and a positron is

where the first and second terms are the kinetic energy operators of the electrons
and positron, respectively. We employ an all-electron description of the atoms and
the nuclei are treated as point charges. The term V(R) is the Coulomb interaction
between the particles,

where ZI is the charge of the I-th nucleus, R= (Re, rp) is the 3(Ne+1)-dimensional
position vector (configuration) consisting of the electronic coordinates Re = (r1, ...,
rNe) and the positron coordinate rp, and the variables of rij, rip, etc. are the distances
between particles.

2.2. Slater-Jastrow Trial Wave Functions

In our QMC calculations we have used trial wave functions of the Slater-
Jastrow form,
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where exp{J(R)} is the Jastrow factor described in the section 2.2.2, are
Slater determinants for the up/down-spin electrons and φp is the positronic orbital,
which are obtained by the method described in the section 2.2.1.

2.2.1. Multi-Component Molecular Orbital Method

In order to generate the orbital part in the trial wave function, that is,

, we used the multi-component molecular orbital (MC_MO) method
within Hartree-Fock (HF) approximation. The MC_MO method is described in
detail in the literature (10) and is discussed only briefly here.

In the MC_MO method for an electronic closed-shell system, the Fock
operators for an electron and a positron are written as

where he,p is the one-particle operator which contains the kinetic energy and
Coulomb interaction potential with the nuclei, Ji,p is the Coulomb operator and Ki
is the exchange operator.

Expanding the molecular orbitals of the electrons and positron in linear
combination of Gaussian basis functions {χn},

we obtain the Roothaan equations for the electrons and positron are

Equations 8 and 9 are solved simultaneously using conventional self-consistent-
field procedures, giving the multi-component electron-positron wave function.
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2.2.2. Orbital Cusp Corrections and the Jastrow Factor

Exactmany-bodywave functions have cuspswhen particles interacting via the
Coulomb interaction come into contact, as the divergence in the potential energy
must be cancelled by an equal and opposite divergence in the kinetic energy. In
the MC_MOwe describe the electron and positron orbitals by linear combinations
of Gaussian-type functions, which cannot satisfy the electron-nucleus or positron-
nucleus Kato cusp conditions. Although an accurate description of the cusps is not
important for obtaining a reasonable variational energy, violating the Kato cusp
conditions (23) can cause serious numerical problems in quantum Monte Carlo
calculations. The problem is particularly serious for particles of opposite charge
because the potential energy diverges to minus infinity, which increases the serial
correlation of the energies and can even lead to instabilities in diffusion Monte
Carlo calculations. We enforce the electron-nucleus cusp conditions by modifying
the electron molecular orbitals using the scheme developed by Ma et al. (24).
In this scheme the orbitals close to the nuclei are replaced by forms which obey
the cusp conditions. In practice introducing these cusp corrections reduces the
variational energy and its variance (24).

The correction to satisfy other cusp conditions and to take the correlation
effect for interparticle such as e−-e−, e−-e+, and e+-nuc. are achieved by Jastrow
factor. We use the Jastrow factor developed by Drummond et al. (25) which
contains two- and three-body terms,

The functions , , , , and f are expressed as power series with variable
coefficients which are constrained to satisfy the cusp conditions and the functions
are smoothly truncated at suitable cutoff distances, as described in the literature
(25). The u term describes pairwise homogeneous and isotropic electron-electron
correlation, while the f term describes pairwise electron-electron correlation which
depends on the positions of the nuclei. The term describes electron-nucleus
correlation which amounts to varying the electron orbitals by multiplying each
of them by a positive position-dependent function. The term describes
pairwise homogeneous and isotropic electron-positron correlation, and the term
multiplies the positron orbital by a positive position-dependent function. All
of the variational parameters in J(R) were optimized by minimizing either the
reweighted (26, 27) or un-reweighted (28) variances of the energy minimization.

We have implemented the methodology described above for including
positrons in QMC calculations within the CASINO code, which we have used for
all the QMC calculations reported here (29).
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2.3. Variational and Diffusion Monte Carlo Methods

In variational Monte Carlo (VMC) method, the energy is calculated as the
expectation value of the Hamiltonian H . Assuming a real trial wave function we
have

where EL is the local energy defined as . To evaluate this
expectation value, we use the Metropolis algorithm (30) which generates a set of
configurations distributed according to ΨT2, and average the corresponding local
energies. VMC is a conceptually simple method. Any form of trial wave function
can be used and it does not suffer from a fermion sign problem.

We use VMC mainly to optimize the parameters in trial wave functions,
while our most accurate results are obtained with the diffusion Monte Carlo
(DMC) method. In the DMC method the wave function is evolved in imaginary
time, which substantially reduces the bias inherent in VMC which arises from
the particular choice of trial wave function. Projector methods such as DMC
suffer from a fermion sign problem which results in a rapid decay towards the
lower energy bosonic ground state. Stable fermionic behavior is achieved using
the fixed-node approximation (16) in which the nodal surface of the DMC wave
function ΨDMC(R, τ) is fixed to that of a guiding function ΨGuide(R) which is taken
to be the optimized trial wave function of eq 3. The importance sampled DMC

method generates the distribution . The total energy
is given by

and the average energy is accumulated after a period of equilibration.

3. Computational Details

We performed all-electron+positron VMC and DMC calculation for
positron-attached alkali-metal hydrides (LiH, NaH, and KH) and hydrogen
cyanide molecule (HCN). The lowest variational energy obtained so far for LiH
and [LiH;e+] systems are reported by Strasburger (11) with the ECG calculations.
In order to confirm our implementations, we used the optimized inter-nuclear
separations obtained from their ECG calculations, 3.348 Bohr for [LiH;e+]
and 3.015 Bohr for LiH, while the calculations of other alkali-metal hydrides
were performed using the optimized inter-nuclear separations obtained from the
MRD-CI calculations by Buenker et al. (19), 3.566 Bohr for NaH, 4.095 Bohr for
[NaH;e+], 4.246 Bohr for KH, and 5.061 Bohr for [KH;e+]. On the other hand,
in the calculation of positronic hydrogen cyanide molecule, we employed the
same molecular geometry as HCN molecule obtained at MP2/aug-cc-pVTZ level,
because there are no reliable reports available for the geometry of [HCN;e+].
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Slater-Jastrow trial wave functions were used with orbitals generated at the
HF level ofMC_MO theory described in the section 2.2.1. Gaussian type functions
(GTFs) of 6-311++G(3d2f,3p2d) and [15s15p6d2f] quality were employed for the
electronic and positronic basis sets, respectively. The exponents of the positronic
GTFs were chosen to form even-tempered sets. The smallest exponents for the s-,
p-, d- and f-type positronic GTFs were 0.00010, 0.00010, 0.001, and 0.001 a.u.,
respectively, because very diffuse-type GTFs are required to represent the weakly
bound positron orbital. The Jastrow factor contained two- and three-body terms,
that is, electron-electron, electron-nucleus, electron-positron, positron-nucleus,
and electron-electron-nucleus terms. The wave function contained 96 optimizable
parameters for [LiH;e+], 136 for [NaH;e+], 124 for [KH;e+], and 123 for [HCN;e+].

We performed DMC calculations with several imaginary timesteps Δτ
ranging from 0.001 to 0.010 a.u. The target population of walkers was chosen
to be 2000 for [LiH;e+], 5000 for the [NaH;e+], 8000 for [KH;e+], and 4000 for
[HCN;e+]. These numbers are sufficient to make the population control error
completely negligible.

4. Results and Discussion

4.1. Positron Binding to Alkali-Metal Hydrides

Figure 1 shows the electronic and positronic molecular orbitals of [LiH;e+],
[NaH;e+], and [KH;e+] systems obtained at the Hartree-Fock level using the MC
MO method. The positronic orbitals in both systems are much more diffuse than
the electronic highest-occupied molecular orbital (HOMO) due to the strong
repulsion between the nuclei and the positron. The positronic orbitals of all
positronic alkali-metal hydrides are located at the H-end of the molecule due to
the negative charge on the hydrogen atom.

4.1.1. Lithium Hydride

Table 1 gives total energies for LiH and [LiH;e+] and PAs obtained in various
calculations. The VMC calculations give lower variational total energies than the
CISD calculations (31), but slightly poorer results than the MRD-CI method (19).
Our DMC energies are slightly higher than the ECG ones, by 0.00049(4) Hartree
for LiH and 0.0003(1) Hartree for [LiH;e+]. These energy differences presumably
arise from the fixed-node error in our DMC calculations. The dependence of the
PA of LiH on the timestep is shown in Figure 2. Although the weak dependence of
the PA on timestep indicates that our calculations are of very high quality, we can
obtain slightly more reliable value by extrapolating to zero timestep. Our result
for the PA extrapolated to zero timestep is 1.010(3) eV, which is only 0.005(3) eV
higher than the ECG result.
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Figure 1. The electronic and positronic molecular orbitals of (a) [LiH;e+], (b)
[NaH;e+], and (c) [KH;e+], obtained at the Hartree-Fock level using the MC MO
method. Contours of isovalue 0.015 are drawn. The meshed region denotes the
contour of the positronic orbital, while the solid black and gray regions denote
contours of the positive and negative parts of the electronic HOMO, respectively.
The percentages of the positron charge within the meshed region are 44.7 % for

[LiH;e+], 63.3 % for [NaH;e+], and 75.3 % for [KH;e+].

Table 1. Total energy (EX, Hartree), inter-nuclear separations (RLiH, Bohr),
and positron affinity (PA, eV) for LiH and [LiH;e+] systems with various

schemes

LiH [LiH;e+]

Method ELiH RLiH E[LiH;e+] RLiH PA

HF -7.98584 3.015 -7.99036 3.348 0.123

VMC -8.06307(34) 3.015 -8.08034(36) 3.348 0.47(1)

FN-DMC Δτ=0.001 -8.070015(24) 3.015 -8.107172(71) 3.348 1.011(2)

extrapo-
lated -8.070045(38) 3.015 -8.10718(11) 3.348 1.010(3)

CISD Ref. (31) -8.03830 3.015 -8.05530 3.015 0.463

MR-CI Ref. (19) -8.068266 3.019 -8.097643 3.324 0.800

FN-DMC Ref. (37) -8.0704(1) 3.015 -8.1072(2) 3.458 1.001(6)

ECG Ref. (11) -8.070538 3.015 -8.107474 3.348 1.005

164

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
M

ay
 2

7,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
01

3

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



Figure 2. Timestep dependence of the positron affinity (PA) of the LiH molecule
(PALiH = ELiH − E[LiH;e+]). The standard error of each DMC energy is shown and

the solid line is a quadratic fit to the DMC data.

4.1.2. Sodium Hydride

Table 2 gives the total energies of NaH and [NaH;e+] obtained from our QMC
calculations. The values from the MRD-CI calculations of Buenker et al. (19) are
also given. For both systems, our VMC energies are substantially lower than both
the Hartree-Fock and MRD-CI energies, where a frozen core approximation was
employed for the Na 1s electrons in the MRD-CI calculations. DMC calculations
use a short-time approximation and the energies should be extrapolated to zero
timestep. The variation of the DMC energy with timestep is smooth and the
extrapolation is well-behaved. The DMC energies of NaH and [NaH;e+] at a
timestep of Δτ = 0.001 are, respectively, 0.0013(2) and 0.0009(4) a.u. lower than
the values extrapolated to zero timestep (see Table 2). These energy differences
are comparable with the scale of interest but, as explained below, the timestep
dependence of the difference between the energies of NaH and [NaH;e+], which
gives the PA, is much smaller.

To compare the accuracy of our DMC calculation for NaH with the MRD-CI
calculation of Buenker et al. (19) we estimated the percentages of the correlation
energies retrieved. We used an accurate value of the non-relativistic energy of
the Na atom of -162.2546 a.u. (32), the experimental dissociation energy of the
NaH molecule of 0.07206 a.u. (33), the Hartree-Fock (HF) energy of a Na atom
of -161.8587 a.u. (32) and the HF energy of the NaH molecule of -162.3923
a.u. (34). Using this data we deduce that our DMC calculation for NaH retrieves
95.7% of the total correlation energy, which is considerably larger than the 39.8%
retrieved in the MRD-CI calculation. We note that this large difference is mainly
due to the frozen core approximation used for the Na 1s electrons in the MRD-CI
calculations.
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Table 2. Total energy (EX, Hartree) and positron affinity (PA, eV) for NaH
and [NaH;e+] systems with various schemes

Method Total energy PA

ENaH E[NaH;e+

HF -162.380271 -162.389916 0.262

VMC -162.721(2) -162.751(2) 0.80(7)

FN-DMC Δτ=0.001 -162.809260(89) -162.86113(17) 1.412(5)

extrapolated -162.80798(18) -162.86025(35) 1.422(10)a

MRD-CI Ref. (19) -162.5653 -162.60332 1.035
a The extrapolated PA and its uncertainty due to timestep bias are estimated from a quadratic
fit to the timestep data shown in Figure 3.

Table 2 gives the PA of the NaH molecule and Figure 3 shows the timestep
dependence of the PA. The VMC value of the PA of 0.80(7) eV is slightly smaller
than the MRD-CI value of 1.035 eV and is further from the DMC result, even
though VMC gives a lower variational energy than MRD-CI. Such a result is
typical of VMC calculations as the inherent bias due to the choice of trial wave
function can be substantial. DMC energies are much less sensitive to the trial
wave function. The timestep-extrapolated DMC value of the PA of 1.422(10) eV is
substantially larger than the VMC value of 0.80(7) eV. Even at the largest timestep
used of Δτ = 0.007 the DMC value of the PA of the NaH molecule is 1.339(4) eV,
which is close to the extrapolated value. The PA increases by only 0.00037(4) a.u.
(0.01 eV) on going from the value for Δτ = 0.001 to the extrapolated value, see
Figure 3. This cancellation of timestep errors in the NaH molecule and positronic
complex occurs because of the similarity of the two systems and because the
timestep error arises mainly from the core orbitals, which vary rapidly in space
but are very similar in the molecule and positronic complex. We conclude that the
timestep error in our extrapolated DMC value of the PA of NaH is smaller than
0.01 eV.

When the ionization potential (IP) of the parent molecule is greater than the
formation energy of Ps of 6.8 eV, the structure of the [NaH;e+] system is closer to
the configuration of NaH···e+ rather than NaH+···Ps, due to the strong attraction of
the electron to the parent molecule. The first IP of the NaH is estimated to be 7.037
eV, which is a little larger than 6.8 eV. To estimate the total energy of NaH+we used
the accurate total energy of the Na atom (32), the IP of the Na atom of 5.139 eV, and
the binding energy of NaH+ of 0.061 eV reported by Melius et al (35). The energy
of infinitely separated NaH + e+ is -162.8266 a.u., which is lower than the energy of
NaH+ + Ps of -162.81798 a.u. We also found another feasible dissociation channel
of [NaH;e+] to Na+ + [H−;e+], which has an energy of -162.85494 a.u. Therefore
the lowest-energy channel for dissociation of [NaH;e+] is to Na+ + [H−;e+] rather
than NaH + e+ or NaH+ + Ps. The zero-point vibration of NaH+ and NaHmolecules
does not change the order of the energies of these dissociation channels, because
the zero-point energy (ZPE) of NaH+ can be neglected and that of NaH is very
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small (0.072 eV (20)). The lowest-energy dissociation channel for [LiH;e+] system
is also to form Li+ + [H−;e+], but LiH + e+ is less stable due to the ZPE of the LiH
molecule as discussed by Mitroy et al. (36) and Mella et al. (37).

Figure 3. Timestep dependence of the positron affinity (PA) of the NaH molecule
(PANaH = ENaH −E[NaH;e+]). The standard error of each DMC energy is shown

and the dotted line is a quadratic fit to the DMC data.

4.1.3. Potassium Hydride

Results for KH and [KH;e+] are shown in Table 3. The DMC energies
are significantly lower than the MRD-CI ones. The DMC energies of KH and
[KH;e+] extrapolated to zero timestep are -600.40028(39) and -600.47638(57)
a.u., respectively. The timestep dependence of the PA of KH is shown in Figure
4. In this molecule the variation of the PA with timestep is larger than for NaH as
the quality of the wave function is poorer because electronic orbitals with very
different energies are present. In addition, the timestep error is not well-described
by a linear form and therefore we have plot both linear and quadratic fits in Figure
4. We have estimated the extrapolated PA by averaging the values from the
linear and quadratic fits and taking the error bar from the timestep bias to equal
the difference between the linear and quadratic extrapolations, giving a PA of
2.051(39) eV. Our DMC value of the PA is much larger than the MRD-CI value
and the uncertainty in the timestep error is small on the scale of the difference
between them.

Figure 5 shows the PAs and dipole moments of LiH, NaH, and KH. We
estimated the dipole moments of these molecules at the coupled cluster singles
and doubles level augmented by a perturbative correction for connected triple
excitations, CCSD(T), with 6-311++G(3d2f,3p2d) Gaussian basis sets. Figure 5
clearly shows that a polar molecule with a larger dipole moment binds a positron
more strongly.
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Table 3. Total energy (EX, Hartree) and positron affinity (PA, eV) for KH
and [KH;e+] systems with various schemes

Method Total energy PA

EKH E[KH;e+

HF -599.680525 -599.703078 0.614

VMC -600.072(3) -600.130(3) 1.6(1)

FN-DMC Δτ=0.002 -600.43605(11) -600.51044(17) 2.024(6)

extrapolated -600.40028(39) -600.47638(57) 2.051(39)a

MRD-CI Ref. (19) -600.069358 -600.116143 1.273
a The value of the PA is taken to be the average of those from the linear and quadratic fits at
zero timestep shown in Figure 4. The uncertainty in the PA due to timestep bias is estimated
from difference between the values of the PA obtained from the two extrapolations.

Figure 4. Timestep dependence of the positron affinity (PA) of the KH molecule
(PAKH = EKH − E[KH;e+]). The standard error of each DMC energy is shown.
The dashed-dotted line is a linear fit to the DMC data while the dotted line is a

quadratic fit.
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Figure 5. Positron affinities (PAs) and dipole moments (DMs) of LiH, NaH, and
KH. The PAs and DMs are estimated using DMC and CCSD(T) calculations,

respectively.

4.2. Positron Binding to Hydrogen Cyanide Molecule

Figure 6 shows the electronic HOMO and positronic orbital in [HCN;e+] by
the MC_MO method. The figure shows that the positron orbital being spatially
more diffuse than that in the positron-attached alkali-metal hydrides, implying the
weak binding. Results for HCN and [HCN;e+] are reported in Table 4. The QMC
total energies are substantially lower than the CISD ones in this case (18) even
at the VMC level. The VMC estimate of the PA is poor, presumably because the
trial wave function of [HCN;e+] is of lower quality than for HCN. The timestep
dependence of the PA of the HCN molecule is shown in Figure 7. The variation
of the PA with timestep is significant in this molecule, and the PA at the largest
timestep (0.010 a.u.) is negative, suggesting that the HCN molecule does not bind
a positron. The variation of the PA with timestep is, however, smooth and the PA
can readily be extrapolated to zero timestep, giving a PA of 0.0378(48) eV.

We have shown that the DMC method can give a reliable description of
correlation effects in positronic molecules, although the accuracy is limited by
the fixed-node approximation. Our results suggest that the HCN molecule is
capable of capturing a positron, although further investigations would be helpful,
considering effects such as relaxing the geometry of [HCN;e+], including the
nuclear zero-point energy, and estimating positron life-times. Including the
relaxation energy of [HCN;e+] can only increase the PA, strengthening our
conclusions.
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Figure 6. The electronic and positronic molecular orbitals in [HCN;e+] system,
obtained by Hartree-Fock level of calculation in MC_MO method. The meshed
contour means certain amplitude of the positronic orbital, and the solid black
and gray regions mean that of the highest occupied molecular orbital (HOMO)

of electrons.

Figure 7. Timestep dependence of the positron affinity (PA) of the HCN molecule
(PAHCN = EHCN − E[HCN;e+]). The standard error of each DMC energy is shown.
The dashed-dotted line is a linear fit to the DMC data while the solid line is a

quadratic fit.
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Table 4. Total energy (EX, Hartree) and positron affinity (PA, eV) for HCN
and [HCN;e+] systems with various schemes

Method Total energy PA

EHCN E[HCN;e+

HF -92.900743 -92.900818 0.0020

VMC -93.26758(25) -93.26753(25) -0.001(9)

FN-DMC Δτ=0.001 -93.399407(73) -93.400727(86) 0.0359(30)

extrapolated -93.39986(12) -93.40121(13) 0.0378(48)

CISD Ref. (18) -92.901242 -92.901915 0.0183a

a The value of PA with the CISD calculations giving the lowest variational energy in their
report.

5. Summary

In this report, we have briefly described the molecular theory to analyze a
positron-attached complex (positronic compound) using quantum Monte Carlo
(QMC) techniques. Our implementation is proved to give satisfactory quantitative
accuracy for positron affinity estimation on the benchmark calculations on
[LiH;e+], giving the consistent result with previous works by the explicitly
correlated Gaussian basis sets11 evaluation. We have applied the QMC methods
to the positron-attached alkali-metal hydrides, [XH;e+] (X=Na and K), for
which accurate theoretical predictions have not previously been made. Our
fixed-node diffusion Monte Carlo (DMC) calculations for [NaH;e+] and [KH;e+]
give the lowest variational energies obtained so far for both systems. The
values of the positron affinities obtained in our DMC calculations for the NaH
and KH molecules are 1.422(10) eV and 2.051(39) eV, respectively. These
values are considerably larger than those from multireference double-excitation
configuration interaction (MRD-CI) calculations (19) of 1.035 eV and 1.273 eV,
respectively. Our DMC calculations confirm the strong correlation between the
positron affinity and dipole moment of alkali-metal hydrides. The mechanism of
positron binding in the molecular dipole field was investigated many years ago by
Crawford (17), and recent MRD-CI calculations (19) have yielded quantitative
estimates of positron affinities. We believe, however, that our DMC positron
affinities are substantially more accurate. Our implementation is also applied
to the positronic hydrogen cyanide molecule, [HCN;e+], and we obtained the
positron affinity of 0.0378(48) eV under the assumption that the geometry of
[HCN;e+] is not relaxed from that of HCN. The positive affinity predicted with
DMC calculations supports the capability of HCN molecule to capture a positron
in its electrostatic field.

The DMC method can provide an excellent description of the electron-
electron and electron-positron correlation in positronic complexes. The present
study shows that this accurate methodology can be applied to systems containing
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atoms with atomic numbers up to at least 19. The polynomial scaling of the
algorithm should make it feasible to perform accurate DMC calculations for
substantially larger positronic complexes.
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Chapter 14

Molecular Dynamics and Hybrid Monte Carlo
Algorithms for the Variational Path Integral

with a Fourth-Order Propagator

Shinichi Miura*

School of Mathematics and Physics, Kanazawa University,
Kakuma, Kanazawa 920-1192, Japan

*E-mail: smiura@mail.kanazawa-u.ac.jp

In the present study, molecular dynamics (MD) and hybrid
Monte Carlo (HMC) methods have been developed for the
variational path integral with a fourth-order propagator. Two
types of hybrid Monte Carlo are introduced. One is based
on a straightforward use of the MD with the fourth-order
approximation, which is called HMC I. The other is based
on a two level description avoiding the evaluation of time
consuming part regarding higher order terms in MD and HMC
I, which is called HMC II. These methods are applied to the
liquid helium-4 in the ground state as a benchmark system. The
calculated results indicate that for the present system, the HMC
II is a better choice from the point of view of the computational
efficiency.

Introduction

Quantum Monte Carlo (QMC) methods provide computational tools for
accurately calculating ground state properties of many body systems (1–4).
Variational Monte Carlo (VMC) method (5), for example, is used to calculate
expectation values of physical quantities using a trial wavefunction of the target
system. The more sophisticated diffusion Monte Carlo (DMC) method (6, 7) is
a projector approach in which a stochastic imaginary time evolution is used to
improve a starting trial wavefunction. The QMC methods including the VMC
and DMC methods have successfully been applied to various quantum systems

© 2012 American Chemical Society
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ranging from quantum liquids like helium to electronic structure of atoms and
molecules (1–4).

Recently, we have developed amolecular dynamics algorithm for a variational
path integralmethod (1) that is closely related to the diffusionMonte Carlomethod.
The variational path integral method, which is also called path integral ground
state (8, 9), is another method to numerically generate exact ground state of many
body systems. We have constructed the molecular dynamics algorithm to carry
out the variational path integral calculations (10–12) on the basis of path integral
molecular dynamics method developed for finite temperature quantum systems
(13, 14). We call it a variational path integral molecular dynamics (VPIMD)
method. In the present study, VPIMDmethod is extended to handle a fourth-order
approximation of a density operator (15) that is utilized to obtain a discretized
path integral expression. Based on VPIMD, hybrid Monte Carlo method for the
variational path integral is also developed. Variational path integral calculations
using these methods have been performed for the liquid helium-4 as a benchmark
system.

Method

The Variational Path Integral

We start to consider a system consisting of N identical particles whose
coordinates are collectively represented to be R. The Hamiltonian of the system
is written by H = T + V where T and V are the kinetic and potential energy
operators, respectively. A quantity playing a central role in the variational path
integral method is the following (1):

where ΦT is a trial wavefunction of the system considered. The above quantity
Z0, which is called a pseudo partition function (16), becomes the inner product of
the exact wavefunction when an imaginary time β is large enough. To obtain the
discretized path integral expression of Z0, the operator e-βH is written by M-fold
product of a short time propagator e-τH where τ = β/M. Then, an approximation is
applied to the short time propagator. The standard primitive approximation can be
written by (1)

The above approximation is accurate up to the second order of τ. On the other
hand, amore accurate approximation can be utilized: a fourth-order approximation
can be written by (15)
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with

Here, α is an arbitrary constant in the range of [0, 1] and C is the following
commutator:

where m is a particle mass. Then, using the primitive or fourth-order
approximation, we can obtain the following path integral expression of Z0:

where S is an imaginary time action. The explicit expression of S is dependent
on the approximation adopted. As in the standard path integral method for
finite temperature systems (17), the pseudo partition function Z0 can be regarded
as a configurational integral of classical polymers. Here, in the variational
path integral, the classical isomorphic systems consist of open chain polymers.
Furthermore, distributions of end-point coordinates at s = 0 and M are affected by
the trial wavefunction ΦT(R(0)) and ΦT(R(M)), respectively.

Molecular Dynamics and Hybrid Monte Carlo

We next consider a molecular dynamics method to sample configurations of
the isomorphic polymers. First, we define the following classical Hamiltonian:

where P(s) collectively denotes fictitious momenta of particles at an s-th time slice
and m′ is a fictitious mass of the particle. Using the above Hamiltonian, we can
derive equations of motion based on the Hamilton equation. Then, in order to
generate the distribution compatible with Z0, we attach a single Nosé-Hoover chain
thermostat to each degree of freedom (13, 14, 18). The resulting equations of
motion are basic equations for the variational path integral molecular dynamics
(VPIMD) method.

We also consider a hybrid Monte Carlo (13, 19, 20) method for the variational
path integral calculations. The hybrid Monte Carlo is a method that combines
molecular dynamics (MD) and Monte Carlo (MC) techniques. Unlike the
standard MC, whole system coordinates are simultaneously updated by equations
of motion. The trial configuration is then accepted by an appropriate Metropolis
criterion as in MC. The HMC algorithm has been proved to yield the canonical
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distribution as long as a time-reversible and area-preserving numerical integration
algorithm is employed to solve the equations of motion; this condition is needed
so as to guarantee the microscopic detailed balance (20). To construct the HMC
method for the variational path integral, the above Hamiltonian HVPIMD is used
for introducing the equations of motion. The variational path integral hybrid
Monte Carlo (VPIHMC) method is outlined as follows. We start with an initial
state of the system ({R(s)}, {P(s)}) and re-sample momenta {P(s)} from a Maxwell
distribution. Molecular dynamics is then used to move the whole system for
time increment of nMD×Δt where Δt is the time step of the MD calculation and
nMD is the number of MD step in one HMC cycle. The trial configuration is then
accepted or rejected based on the following Metropolis criterion:

where ΔHVPIMD is the change in the total Hamiltonian HVPIMD as a result of the
move. In the present study, the method is referred to be HMC I. When we adopt
the fourth-order approximation, the effective interaction among polymers includes
the square of the gradient of the potential function. Then, the Hessian matrix of the
potential have to be calculated for evaluating the force in MD and HMC I. Here,
we consider a method to avoid the calculation of the Hessian matrix in the HMC
method. First, we decompose the action into two parts:

where Vcorr includes the terms regarding the gradient of the potential and the
remaining terms are expressed to be S0. Then, we define the following classical
Hamiltonian using S0:

We can derive equations of motion using the above H′VPIMD. As in the HMC
I, the system coordinates are evolved with time increment nMD×Δt using the
equations of motion. The trial configuration is then accepted or rejected by the
following Metropolis criterion:

where ΔH′VPIMD and ΔVcorr respectively denote the change in the corresponding
quantities as a result of the move. The method is referred to be HMC II. Since
the terms regarding the gradient of the potential do not appear in H′VPIMD, we do
not need to evaluate the Hessian matrix. Thus, the computational cost is virtually
equivalent with that by the primitive approximation using the same M. The bias
introduced by using S0 is then removed by the above Metropolis function.
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In the HMC methods, intermediate configurations in nMD steps are usually
discarded. However, we can use the intermediate configurations to evaluate
physical quantities (21). The procedure is that the configurations generated by
the equations of motion are simply accepted or rejected according to the above
Metropolis criteria at every nsample steps (nsample ≤ nMD). Here, the acceptance or
rejection of the intermediate configurations must not give any effect on the system
evolution of nMD steps (21).

The above formulation is based on the real space coordinates R. In the present
study, we use staging coordinates (13) to describe the polymer configurations for
enhancing sampling efficiency. The standard definition (14, 22) on the staging
variables and associated staging masses m(s) are adopted. The fictitious masses for
the staging variables m′(s) are set to be equal to the corresponding staging masses
except end-point coordinates (at s = 0 and M) where m′(0) = m′(M) = γ × m. In the
preset study, the parameter γ is chosen to be about 4 / M.

Figure 1. Total energy per 4He atom as a function of the imaginary time step τ.
Total projection time is β = 0.4 K-1. Open diamonds, triangles, and circles denote
the calculated results by the primitive, fourth order (α = 1/3), and fourth-order
(α = 0) approximations, respectively. The curves are fitted results of the energy

where the corresponding τ dependence is assumed.
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Figure 2. Acceptance ratio of the hybrid Monte Carlo I (left panel (a)) and the
hybrid Monte Carlo II (right panel (b)) as a function of nMD that is the number of
the molecular dynamics steps in one hybrid Monte Carlo cycle. Open circles,
squares, diamonds, and triangles are the results using the time increment of one

molecular dynamics step Δt = 12, 13, 14, and 15 fs, respectively.

Results

In the present study, the liquid helium-4 is adopted as a model system to
examine computational efficiencies of the methods. The density of the system is
set to be the experimental equilibrium value ρ = 0.0218 Å-3. The system consists
of N = 64 4He atoms in a cubic box under the periodic boundary condition. The
interatomic interaction is represented by the pair interaction developed by Aziz
and coworkers (23). The following trial wavefunction is adopted:

where b = 3.07 Å (9).
We first show the total energy of the liquid helium-4 as a function of the

imaginary time increment τ. The total projection time β is fixed to be 0.4 K-1.
The energy has been evaluated using the mixed estimator. Calculations have been
performed by the VPIMD method. Regarding the fourth-order approximation,
we test the cases of the parameter α = 0 and 1/3. As seen in Figure 1, the energy
approaches a converged value with decreasing τ. The faster convergence is
achieved using the fourth-order approximations compared with the primitive
counterpart. Regarding the fourth-order approximation, the case with α = 0
shows better performance. The calculated energies are described by the following
relation (9):
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where E0 is an extrapolated ground-state energy and δ depends on the
approximation employed: δ = 2 for the primitive approximation and δ = 4 for
the fourth-order approximation. As seen in the figure, the τ dependence of the
energy for each approximation is well fitted by the above equation, confirming
the second and 4-th order convergence of the energy.

We next examine the computational efficiency on the HMC I and II methods.
Hereafter, the total projection time β is fixed to be 0.25 K-1 with M = 100. The
value α = 0 for the fourth-order approximation is adopted. The number nsample is 10
for all the calculations. Molecular dynamics calculation with Δt = 10 fs has been
performed for comparison. In Figure 2, we show acceptance ratio for the HMC
calculations for various nMD that is the number of MD steps in one HMC step. As
expected, the acceptance ratio decreases with increasing nMD for each Δt, since the
rejection arises from the Hamiltonian error as a result of the move. For given nMD,
the acceptance ratio decreases with increasing Δt. In the case of the HMC II, the
similar trend is observed, however, the trend is found to be milder.

Figure 3. Diffusion constant of a tagged particle as a function of nMD. Left panel
(a) indicates the hybrid Monte Carlo I results and right panel (b) the hybrid
Monte Carlo II results. Open circles, squares, diamonds, and triangles are the
results using the time increment of one molecular dynamics step Δt = 12, 13, 14,

and 15 fs, respectively. Crosses are the molecular dynamics results.
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Figure 4. Correlation time in total energy as a function of nMD. The correlation
time is defined by the number of correlated steps multiplied with the CPU time
of one step. Left panel (a) indicates the hybrid Monte Carlo I results and right
panel (b) the hybrid Monte Carlo II results. Open circles, squares, diamonds,
and triangles are the results using the time increment of one molecular dynamics
step Δt = 12, 13, 14, and 15 fs, respectively. Crosses are the molecular dynamics

results.

In Figure 3, we show a diffusion constant D to measure the sampling
efficiency of the method. The diffusion constant is defined by the slope of the
root mean square displacement of a tagged isomorphic polymer as a function of
the elapsed CPU time. It is noted that the above diffusion constant is not related
with the experimentally observable diffusion constant of the helium atoms. This
is artificially introduced to measure the sampling efficiency of the isomorphic
polymers in phase space; the larger diffusion constant yields faster convergence
of physical quantities, indicating more efficient sampling. In the case of the HMC
I, the diffusion constant increases with increasing nMD for smaller Δt (Δt = 12
and 13 fs), while nMD dependence shows a maximum around nMD = 50 for larger
Δt (Δt = 14 and 15 fs). Compared with MD, the sampling efficiency is almost
comparable using large nMD with small Δt. Note that the computation time by
HMC I was found to be 64 % of the corresponding MD. The extra computation
time comes from the integration of thermostat’s equations of motion. With
respect to HMC II, larger D is found in the case of larger nMD except in the case
of largest Δt examined. Much better efficiency is observed in comparison with
MD. In the case of the HMC II, the computation time was found to be 28 % of
the corresponding MD, due to avoiding the evaluation of the Hessian matrix.
We next show another quantity regarding the correlation in successive HMC
steps. This corresponds to the correlation time or statistical inefficiency (24, 25).
Correlation time in the total energy, which is defined by the number of correlated
steps multiplied by the CPU time for one step, is presented in Figure 4. For
both methods, the correlation time monotonically increases with increasing nMD.
However, much longer correlation time is found in the case of the HMC I.
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As seen in Figures 3 and 4, the sampling efficiency and the statistical
efficiency show the opposite trend. The HMC parameters should be chosen
with considering the balance between the sampling efficiency and the statistical
inefficiency. For example, in the case of Δt = 12 fs and nMD = 100, D(HMC I)
/ D(MD) = 0.9 where D(HMC I) and D(MD) denote the diffusion constant by
HMC I and MD, respectively. This indicates the sampling efficiency of the HMC
I is comparable with that of MD. On the other hand, τcor(HMC I) / τcor(MD) = 2.1
where τcor(HMC I) and τcor(MD) denote the correlation time by HMC I and MD,
respectively, which means the HMC I method is twice as statistically inefficient
as MD. Regarding the HMC II, D(HMC II) / D(MD) = 2.0 and τcor(HMC II)
/ τcor(MD) = 1.0. While the sampling efficiency of the HMC II is twice in
comparison with MD, the correlation time is almost the same. It indicates that the
HMC II is a better choice for the above HMC parameters.

Summary and Outlook

In the present study, molecular dynamics and hybrid Monte Carlo (HMC)
methods have been developed for the variational path integral using a fourth-
order propagator. Two types of the HMC methods have been introduced. One is
constructed by a standard way of introducing the HMC using the VPIMD method
with a fourth-order propagator. This is called HMC I. The other is that a two
level description is introduced by separating higher order terms from the action.
Then, time consuming part in MD and HMC I can be avoided. The method is
called HMC II. The methods have been applied to the liquid helium-4 to examine
the computational efficiency. The HMC II is found to be a better choice for the
present system.

Future applications of the present methods include nuclear fluctuations
in hydrogen-bonded clusters like water molecules. For these systems, the
description of the intermolecular interaction is a key to understand the molecular
properties accurately. As in the path integral simulations for finite temperature
systems (26–28), systematic improvement of the adiabatic potential energy
surface is possible by directly combining the variational path integral with
electronic structure calculations. As seen in the present study, the fourth-order
approximation is useful to reduce the number of the imaginary time slices
M. However, the evaluation of the Hessian matrix is computationally highly
expensive for the electronic structure calculations. From this point of view,
the HMC II method will be useful for the ab initio variational path integral
calculations.
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Chapter 15

Ab Initio Path Integral Molecular Dynamics
and Monte Carlo Simulations for Water Trimer

and Oligopeptide
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We have performed ab initio path integral molecular dynamics
and Monte Carlo simulations for water trimer and oligopeptide.
In the first part, we illustrate the path integral molecular
dynamics method based on fragment molecular orbital
(FMO-PIMD) method. The FMO-PIMD method is applied
to water trimer and glycine pentamer to investigate nuclear
quantum effects on the structure and molecular interactions.
In the second part, we employ the Møller-Plesset perturbation
theory and discuss interplay of nuclear quantum effects and
electron correlations.

© 2012 American Chemical Society
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Introduction

Hydrogen-bonded systems are important in various fields of chemistry and
biology. Theoretical treatments of hydrogen-bonded systems require accurate
calculations of potential energy surface and consideration of quantum effects
of nuclei. Earlier studies have shown that nuclear quantum effects (NQEs) of
hydrogen atoms influence the structural and dynamical properties of these systems
(1–9).

Ab initio path integral simulation is one of the useful simulation methods
suitable to treat hydrogen-bonded systems. Marx and Parrinello (10) and
Tuckerman et al. (11) originally formulated ab initio path integral molecular
dynamics (PIMD) method based on the density functional theory and the
Car-Parrinello molecular dynamics (MD) method. This approach has been used
in the studies of various hydrogen-bonded systems (12–16). Shiga, Tachikawa,
and co-workers (17–19) later developed an ab initio PIMD method employing
molecular orbital theory. Semiempirical molecular orbital theories have also
been combined with the PIMD methods as an alternative approach to treat large
systems (20). While most path integral simulations have employed the MD
method to sample the nuclear configuration space, a path integral Monte Carlo
(PIMC) (21) have also been employed by several authors (22–24). Pierleoni have
formulated the PIMC method with quantum Monte Carlo method and applied it
to the study of metallic hydrogen (24).

In the first part of this article, we report the PIMD method to treat large
hydrogen-bonded systems with high accuracy (25). Our approach is based
on the fragment molecular orbital (FMO) method. The FMO method (26–33)
is a highly parallelizable quantum-chemical method suitable for the accurate
electronic structure calculations of large systems. The FMO-based molecular
dynamics (FMO-MD) method have also been developed (34) and applied to
hydrated molecular systems (35). The incorporation of three-body term (30, 31)
in the FMO method improves the accuracy of the FMO-MD (36, 37). Nagata et
al. (38) have developed fully analytical gradients in the FMO method, in which
the self-consistent Z-vector method is derived for solving the response term due
to the external potentials. Mochizuki et al. (39) have implemented the energy
gradient of the second-order Møller–Plesset perturbation theory in conjunction
with the FMO method. Fujita et al. (40) have recently introduced the periodic
boundary condition on the FMO method and calculated the radial distribution
functions of liquid water. With these developments of the FMO-MD methods in
mind, FMO-based PIMD method is expected to be a useful simulation method to
treat large hydrogen-bonded systems with inclusion of NQE.

In the present study, we develop and implement the ab initio PIMD using
the FMO method (FMO-PIMD). This FMO-PIMD method will provide an ab
initio tool to simulate large hydrogen-bonded systems with high accuracy. Water
trimer and glycine pentamer are studied using the FMO-PIMD method, where the
electronic structure is first considered at the Hartree-Fock (HF) level. Analyzing
the NQEs on the structure and the molecular interactions in these systems, we
discuss the usefulness of the FMO-PIMD method.
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In the second part of this article, the PIMC calculation together with
Møller-Plesset (MP) perturbation theory is carried out and compared with the
previous HF-based PIMD results so as to examine the dependence of the NQEs on
the approximation level of molecular orbital theories. This ab initio comparison
is analogous to that by Habershon et al. (7). They have analyzed the NQEs on
the dynamics of liquid water using several force fields for water and shown that
the PIMD simulations that employ rigid water models and flexible water models
where intramolecular interactions are described by simple harmonic functions
overestimate the NQEs on the diffusivities in liquid water. They have also
remarked that the NQEs on the hydrogen bonds (HBs) consist of two competing
effects: Intermolecular zero-point energies and tunneling effects destabilize the
HBs, which is canceled by intramolecular zero-point energies that lead to the
increase in the O-H bond lengths and result in the stabilization of the HBs. This
picture has recently been supported by Li et al. (9). They have analyzed the
NQEs on the HBs in several hydrogen-bonded systems and suggested that the
NQEs weaken the weak HBs but strengthen the relatively strong HBs.

The electronic structure was considered at the HF level in the first part,
while the HF method overestimates the O-H harmonic frequencies (41) and
underestimates the hydrogen-bond interactions (42). Consequently, the PIMD
methods with the HF may overestimate the NQE that destabilizes the HBs. The
tendency similar to that by Habershon (7) may also be observed in the case
of molecular orbital theories. To analyze this issue, the PIMC method with
the MP perturbation theory was applied to water trimer and compared with
previous PIMD-HF results. Since we are interested in interplay between electron
correlations and the NQEs, the FMO method is not employed in this study. We
then discuss how the NQEs depend on the level of molecular orbital theories.

Methods

Path Integral Molecular Dynamics Based on Fragment Molecular Orbital
Method

In the FMO method, the calculated system is first divided into a lot of
fragments, and molecular orbital calculations for fragment monomers and dimers
are performed to approximate the total energy and other properties (26–29). The
Born-Oppenheimer (BO) energy of the system can be calculated as follows:

where Nf is the number of fragments; EI and EIJ denote the energies of
fragment monomer and dimer, respectively, which are calculated under the
electrostatic potentials from other fragments. The atomic forces acting on the
nuclei are obtained by taking the derivatives of the BO energy (28, 38). We
have then developed the PIMD methods based on the FMO method. Detailed
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implementation of our method is found elsewhere (25). ABINIT-MPX program
package was employed for FMO calculations (27, 29, 32, 33).

FMO-MD and FMO-PIMD methods are applied to water trimer and
glycine pentamer in the present study. In both simulations, electronic structure
calculations were carried out at the HF level, and temperature was set at 300
K. In the calculations of water trimer, 6-31G** basis set was employed, and
the imaginary time slice of 32 was used in the PIMD calculation. For glycine
pentamer, STO-3G basis set was employed, and the imaginary time slices of 16
was applied. Other details of the calculations are found in Ref . (25).

Path Integral Monte Carlo with Møller-Plesset Perturbation Theory

In the second part of this article, we show the results of the PIMC simulations
withMP perturbation theory for water trimer. Here, we employ the PIMCmethods
because the gradient calculation of the MP perturbation theory is expensive. The
second-order MP perturbation (MP2) theory was used to take account of electron
correlations at the least computational cost. In addition to the MP2, we employ
third-order MP perturbation (MP3) theory. The O-O distances of the water trimer
optimized at the MP2 level are shorter than those optimized at the post MP2 level
(41, 43–46). We discuss the effects of higher-order electron correlations on the
structure in connection with the NQEs.

We have employed the normal-mode sampling of PIMC (22, 23) which relies
on the following effective potential:

where P is imaginary time slices, N is the number of atoms, and s and I refer to the
indices of P andN, respectively. wP=P1/2/kBT, where kB is the Boltzmann constant,
and T is temperature. q are normal mode coordinates and related to atomic
Cartesian coordinates R through a linear transformation, where zero-frequency
mode (s=1) correspond to centroid coordinates which describe the center of mass
motions of the polymer. The normal mode masses MI(s) is related to the atomic
masses MI through MI(s)=MIλ(s), where λ(s) is given by

E is the Born-Oppenheimer potential energy calculated by quantum mechanical
methods.

Following procedure was employed as a trial displacement. First, centroid
coordinates (s=1) or other coordinates (s≠1) are chosen with each probability of
0.5. In the movements of centroid coordinates, we attempt to move the centroid
coordinates of one atom. In the movements of other coordinates, we attempt to
simultaneously move several normal mode coordinates other than the centroid
coordinates. We performed this trial move in such a way that the acceptance ratio
becomes 0.4-0.5 in the system of water trimer.

190

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
M

ay
 2

7,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
6,

 2
01

2 
| d

oi
: 1

0.
10

21
/b

k-
20

12
-1

09
4.

ch
01

5

In Advances in Quantum Monte Carlo; Tanaka, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2012. 



Water trimer was employed also in this study. MC and PIMC simulations
using MP2 and MP3 were performed at the temperature of 300K, where 6-31G**
basis sets was employed. Simulations were carried out for 300000 steps;
equilibration runs were carried out for 100000 steps, and following 200000 steps
were used for calculations of physical properties. The imaginary time slices of
16 was employed for the PIMC simulations. We compare the MP2 and the MP3
results with that of the former HF and discuss the dependence of the NQEs on the
level of molecular orbital theories.

Results and Discussion
FMO-PIMD for Water Trimer

We first show the optimized structure of the water trimer, before illustrating
the results of the MD and the PIMD simulations. Figure 1 represents the global
minimum (GM) structure of the water trimer optimized by the FMO-HF/6-31G**
method. It is well established (47) that the GM structure of the water trimer
is a cyclic structure where each water monomer simultaneously acts as both
hydrogen-bond donor and acceptor. The O-O distances, O-O-O angles, and the
interfragment interaction energies (IFIEs) of the FMO method are also shown
in Fig. 1. Since each water molecule was assigned as one fragment, the IFIEs
describe the intermolecular interactions between the water molecules.

Figure 1. Optimized structure of water trimer calculated by FMO-HF/6-31G**
method. The O-O distances (ROO), the O-O-O angles (θOOO), and the

interfragment interaction energies (ΔE) are shown in units of Å, degrees, and
kcal/mol, respectively.

In order to examine the NQEs on the structure of water trimer, probability
distributions of the O-O distances and the O-O-O angles were calculated and are
shown in Figs. 2(a) and 2(b), respectively. In the quantum system, the extended
separation of the O-O distance was found up to the range longer than 4.5Å, which
is not observed in the classical system.

The differences between the quantum and the classical systems for nuclear
degrees of freedom are also found in the distribution of the O-O-O angles. The
maximum peaks are located at around 60 degrees in both the MD and the PIMD
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simulations, hence the cyclic structures are dominant. The distribution of the O-
O-O angles in the MD simulations extends within the range of 60±20 degrees,
indicating that the cyclic structure was maintained throughout the simulation. On
the other hand, in the PIMD simulation, the distribution is also observed in the
range of 20< θOOO <40 degrees and 100< θOOO<120 degrees as well, showing that
the NQEs induce the significant fluctuations from the cyclic structure.

Figure 2. The probability distribution of (a) the O-O distances (ROO) and (b) the
O-O-O (θOOO) angles in the water trimer calculated by the MD (solid line) and the
PIMD (dashed line) simulations. The results are shown in units of Å and degrees.

Figure 3. One of snapshots in the PIMD simulation for water trimer. The picture
only shows the centroid coordinates, which is averages of all beads. The O-O
distances (ROO), the O-O-O angles (θOOO), and the interfragment interaction
energies (ΔE) are shown in units of Å, degrees, and kcal/mol, respectively.

Figure 3 represents one of snapshots from the PIMD simulation. Here, only
the centroid coordinates of the atoms are shown. In this structure, the O-O distance
and the corresponding IFIE of a pair of water molecules are 5.30Å and 0.08 kcal/
mol, respectively, thus showing that their HB is considered to be broken. The
three O-O-O angles are 33.2, 33.6, and 113.2 degrees. These values of the O-O
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distances and the O-O-O angles correspond to the distributions found only in the
PIMD simulation as in Figs. 2(a) and 2(b). The observations thus indicate that
the differences between the classical and quantum systems consist in whether or
not the structures similar to Fig. 3 are found. The NQEs considerably enhance the
structural fluctuations so that one of the hydrogen bonds would be broken.

Figure 4. The probability distribution of the interfragment interaction energy
(ΔE) between water molecules calculated by the MD (solid line) and the PIMD
(dashed line) simulations for water trimer. The IFIE values are shown in units

of kcal/mol.

Figure 4 shows the distributions of the IFIEs between water molecules.
Maximum peaks are observed at around -5.4 and -4.9 kcal/mol in the MD and
the PIMD simulations, respectively. The peak found at around -0.5 kcal/mol
in the PIMD simulation corresponds to the interactions of the pair of water
molecules where the HB is broken. These results indicate that the NQEs
enhance the fluctuations in the intermolecular interactions. The distribution
in the range of -8 < ΔE < -7 kcal/mol in the PIMD simulation, which is not
found in the MD simulation, indicates that in some configurations the NQEs
stabilize hydrogen-bond interactions. This stabilization of the HB is due to
the intramolecular zero-point energies leading to the increase in the O-H bond
lengths. Figure 4 shows that there are two competing NQEs on the hydrogen-bond
interactions, which are ascribed to intermolecular and intramolecular vibrations.
The results presented here are consistent with a physical picture of the NQEs on
the HBs proposed by Habershon et al. (7) and Li et al. (9).

In summary, the NQEs destabilize the HB in water trimer on average: the
NQEs induce the considerable fluctuations from the cyclic structure so that
one HB would be broken. This result is owing to the zero-point energies of
intermolecular vibrations and the tunneling effects. Although the NQEs primarily
destabilize the HB, there is also another tendency that the HB between water
molecules are stabilized by the NQEs. We have observed these two competing
NQEs by calculating the distribution of intermolecular interaction between water
molecules, which is consistent with the earlier studies (7, 9).
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FMO-PIMD for Glycine Pentamer

The structure of the glycine pentamerwas optimized by the FMO-HF/STO-3G
method, which is shown in Fig. 5. N-H…O and O-H…O hydrogen bonds are
observed between the fragments 2-5 and 3-5, respectively. Geometrical properties
in these HBs were then averaged over the MD and the PIMD simulations. IFIEs
between fragment 2-5 and 3-5 are also shown. Since each glycine was assigned as
one independent fragment, these IFIEs describe these hydrogen-bond interactions.
As shown in Table 1, the NQEs seem to increase the N-O and O-O distances, and
the IFIEs also indicate that the NQEs destabilize intramolecular interactions in
the glycine pentamer. Nevertheless, the differences between the classical and the
quantum systems were within the statistical uncertainties due to the limitation of
computational cost.

Then, we compare the present results with the earlier study. Ishimoto et al.
(4) have discussed the hydrogen/deuterium isotope effects on the HBs in glycine
pentamer and octamer by combining the FMO and multi-component molecular
orbital theory, in which only hydrogen atoms are treated quantum-mechanically.
They have observed that the HBs in the glycine pentamer with hydrogen atoms,
which have larger zero-point energies, are more stabilized than those with
deuterium atoms. Therefore, their results indicate that the incorporation of the
zero-point energies leads to the stabilization of the HBs in the glycine pentamer,
which contradicts our results. Since quantization of only hydrogen atoms mainly
includes the intramolecular zero-point energies, their calculations incorporate
the NQEs that destabilize the HBs. The present results, which take account of
quantum effects of all nuclei, suggest that the NQEs destabilize the HBs. Although
there are considerable statistical errors in our results, present observations agree
to the suggestion by Li et al. (9) that the NQEs weaken the weak HBs.

Figure 5. The structure of the glycine pentamer optimized by the
FMO-HF/STO-3G method.
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Table 1. Structural properties and interaction energies of the N-H…O and
the O-H…O hydrogen bonds in glycine pentamera

Opt. MD PIMD

N-H…O

<RN-O> 2.94 3.06±0.07 3.28±0.21

<RN-H> 1.03 1.03 1.04

<RHO> 1.99 2.11±0.08 2.38±0.27

<ΔE2-5> -4.44 -3.37±0.83 -2.54±1.01

O-H…O

<ROO> 2.63 2.90±0.25 3.06±0.30

<ROH> 0.99 0.99 1.00

<RHO> 1.73 2.22±0.48 2.62±0.57

<ΔE3-5> -5.17 -2.20±2.91 -1.04±1.12
a Results are shown in units of Å and kcal/mol . ΔE are interfragment interaction energies
between fragment 2-5 (N-H…O) and fragment 3-5 (O-H…O), respectively. Shown results
are those of the optimized structure, and the thermal averages of the MD and the PIMD
simulations. Statistical uncertainties of the results are also shown. Unless stated, the
statistical uncertainty is smaller than the last digit.

PIMC for Water Trimer

In order to quantify the effects of electron correlations on the structure in
the water trimer, O-H bond lengths and O-O distances are averaged in the PIMC
simulation and presented in Table 2. Average O-H bond lengths increase in the
following order: HF < MP3 < MP2. The HF overestimates the intramolecular
harmonic frequencies and thus underestimates the O-H bond lengths. The
incorporation of electron correlations by the MP2 increases the O-H bond lengths,
but the MP2 rather overestimates them. The results at the MP3 level are smaller
than those of the MP2.

We then examine the average O-O distances. Large differences between
classical and quantum simulations obtained by the HF method is due to the
breaking of the HB: quantum results include the large separation of water
molecules. In contrast to the HF, such a large separation between water molecules
is not observed in the cases of the MP2 and the MP3. This result shows that
the considerable fluctuations induced by the NQEs in the HF are due to the
underestimation of hydrogen-bond interactions; the HF method overestimates the
NQEs that destabilize the hydrogen-bond interactions. This ab initio observation
is analogous to that by Habershon et al. (7). The present results show that the
incorporation of electron correlations is essential to perform the path integral
simulations.

Figure 6 show the probability distribution of the O-O distances calculated by
the (a)MP2 and the (b)MP3. Themaximumpeak are observed at around 2.85-2.86
Å for theMP2 and 2.86-2.87Å for theMP3. The peak positions of the distributions
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correspond to the average O-O distance of vibrational ground states. Liu et al.
(48) have estimated the O-O distance in the water trimer by vibrational-rotational-
tunneling spectroscopy and found it is 2.86-2.87Å. The peak positions of the O-O
distances are in good agreement in their estimation. In the case of the MP2, the
consideration of the NQEs has slight effects on the O-O distribution, which may
be due to the overestimation of the hydrogen-bond interactions by the MP2. On
the other hand, the NQEs enhance the fluctuations in the O-O distances in the
MP3. The detailed comparison between the MP2 and the MP3 will be published
elsewhere (49).

Table 2. Average O-H bond lengths (ROH) and O-O distances ( ROO) of
water trimer calculated by the HF, the MP2, and the MP3 methods with 6-

31G** basis seta

Classical Quantum

<ROH>

HF 0.948 0.961

MP2 0.970 0.983

MP3 0.965 0.978

<ROO>

HF 3.069±0.018 3.296±0.198

MP2 2.885±0.013 2.913±0.016

MP3 2.931±0.021 2.955±0.020
a Results are shown in units of Å. The results of the HF were calculated by the previous
FMO-MD (Classical) and FMO-PIMD (Quantum) simulations. The results of the MP2
and the MP3 were calculated by the MC (Classical) and the PIMC (Quantum) simulations.
Statistical uncertainties of the results are also shown. Unless stated, the statistical
uncertainty is smaller than the last digit.

Figure 6. The probability distributions of the O-O distance (ROO) in the water
trimer calculated by (a) the MP2 and (b) the MP3. Solid and dashed lines

refer to the results of MC and PIMC simulations, respectively. ROO is measured
in units of Å.
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Summary and Perspective
In the first part of this article, we have presented the FMO-based PIMD

method suitable to treat large systems and applied it to water trimer and glycine
pentamer. In the FMO-PIMD study of the water trimer, we have shown that the
NQEs enhance the fluctuations in the structure and the intermolecular interactions.
We have also demonstrated the FMO-PIMD calculations of the glycine pentamer
and shown that the NQEs in the glycine pentamer destabilize the intramolecular
hydrogen-bond interactions. Although statistical errors are considerable in our
calculations, the present results are consistent with the suggestion by Li et al (9)
that the NQE weaken the weak HBs. To our knowledge, this is the first attempt
to treat all (electronic and nuclear) degrees of freedom in polypeptides quantum
mechanically.

In the second part of this article, the PIMC based on the MP2 and the MP3 has
been applied to water trimer so as to investigate the dependence of the NQEs on
the calculation level of molecular orbital theories. The considerable fluctuations
induced by the NQEs in the HF are due to the underestimation of the hydrogen-
bond interactions. The incorporation of electron correlations is thus essential to
perform path integral simulations. Present ab initio observation is analogous to
the classical one by Haberoshon et al. (7). The NQEs have slight effects on
the distribution of the O-O distances in the MP2, while the NQEs induce the
fluctuation of the O-O distance in the MP3. The detailed comparison between
the MP2 and the MP3 will be published elsewhere (49).

The FMO-MD method has recently been improved through theoretical
developments such as fully analytical gradients (38), FMO-MP2 gradient (39),
and periodic boundary conditions (40). FMO-PIMD methods in conjunction with
these developments will become a powerful simulation tool to describe HBs and
proton transfer in condensed systems.
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Chapter 16

Beyond a Single Solvated Electron:
Hybrid Quantum Monte Carlo and Molecular

Mechanics Approach

D. Yu. Zubareva and W. A. Lester, Jr.*,a,b

aKenneth S. Pitzer Center for Theoretical Chemistry,
University of California, Berkeley, California 94720

bChemical Sciences Division,
Lawrence Berkeley National Laboratory,

Berkeley, California 94720
*E-mail: walester@lbl.gov

A hybrid computational approach that combines quantum
Monte Carlo and molecular mechanics (QMC/MM) has been
recently developed for the accurate treatment of electron
correlation in systems that require a large number of explicit
solvent molecules. Here, the results of QMC/MM calculations
are reported of the binding among two excess electrons and a
water cluster containing 31 molecules. This system is relevant
to the study of the interaction of excess electrons with solvent
molecules during electron and energy transfer in media. Strong
sensitivity of QMC/MM prediction of the vertical detachment
energy is observed with respect to the number of water
molecules treated at the QMC level. Origins of this tendency
are discussed.

Introduction

The application of quantum Monte Carlo (QMC) approaches to realistic
molecular systems faces the common trade-off of ab initio quantum chemistry,
namely, quality vs. feasibility. A recently developed hybrid methodology that
combines QMC and force-field molecular mechanics (QMC/MM) (1) is perceived
as a viable route to the treatment of challenging systems such as solute-solvent
complexes in a way that preserves the accurate description of correlation for the
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solute molecule treated by QMC and incorporates solvent effects as captured
by MM. The present contribution describes a QMC/MM investigation of the
interaction among two excess electrons and a cluster of water. Dianionic water
clusters can be seen as a model of the elusive dielectron (e−2)aq whose existence
is inferred from the results of pulse radiolysis experiments (2, 3). Theoretical
studies of (e−2)aq are also available (4–10). The stabilization of the electron
pair in singlet or triplet spin-coupling by solvent can be an important aspect of
multi-electron charge and energy transfer as well as electron capture by anionic
systems resulting in dissociation of the latter.

The chemical context of the present problem is similar to that of bound
states of a single solvated electron (11–38). The ability of water clusters to bind
excess electrons depends largely on cluster geometry. The structural motifs of
water clusters interacting with 2 excess electrons are available from a combined
study utilizing force-field replica-exchange simulations and density functional
theory (DFT) gradient optimization (39). Vertical detachment energies (VDEs)
are used as a measure of binding. Dianions characterized by positive VDEs
were found to bind electrons either in two cavities or one electron in a cavity
and the other on a surface. The computation of VDEs is associated with certain
difficulties approach. For example, DFT facilitates affordable computations but
systematically overbinds excess electrons, although the calculations are readily
affordable. With perturbation theory, more accurate results can be obtained but
the computations become prohibitively expensive for large water clusters. The
problem appears to be amenable to QMC/MM treatment, which has been pursued
here with findings reported below. In view of the methodological emphasis of the
present study, only one (H2O)312- cluster is considered which is shown at Figure 1.

Figure 1. From left to right: 9-22, 12-19, and 15-16 partitioning of the (H2O)312-
cluster into QMC (O atoms in blue) and MM (O atoms in red) parts.
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Methodology

The application of QMC/MM implies that the system under consideration
can be separated into two components. One of these requires a very accurate
quantum treatment (QMC) and the other implies a lower level of theory (MM)
due to lesser importance in the system. In the context of detachment of an excess
electron from a dianionic water cluster, the assumption is that the interaction of
the two water molecules with the excess electron is not equivalent which raises
the question of how to treat this distinction in water molecules. One notes that
a heuristic approach is used typically to distinguish between QMC and MM
fragments. Here, it is based on the change of cumulative Mulliken charge of
water molecules upon loss of one electron by the dianion. The assumption is
that the molecules undergoing the largest change of charge are more involved
in the interaction and should be treated at the quantum level. Following this
direction, QMC/MM calculations were carried out for cases with 9, 12, and 15
water molecules in the QMC component of the cluster. The remaining 22, 19, and
16 molecules were described by the TIP3P force-field (40).

QMC/MM calculations were performed with the Zori code (41) according
to the methodology described in Ref. (1). Trial wave functions for fixed-node
diffusion Monte Carlo (FNDMC) calculations were constructed in the product
form of an independent particle function and correlation function. The
former included B3LYP (41, 42) determinants obtained from calculations with
Burkatzki-Fillipi-Dolg (BFD) (43) pseudo-potential and basis set augmented
with 3 diffuse s exponents on H. These calculations were carried out using
GAMESS software (44). Correlation functions (CF) were in the form of a
17-term Schmidt-Moscowitz-Boys-Handy (SMBH) expansion (45–47). The CF
parameters were energy optimized using variational Monte Carlo (VMC). For
each partitioning of the cluster, the determinants describing QMC component
were obtained in the absence of the MM component so that the nodal structure
of the trial wave functions used in the FNDMC/MM runs does not reflect the
presence of solvent. The effect of the solvent is accounted for only by the total
energy shift due to coupling between QMC and MM components, not by the
fixed-node approximation. The QMC/MM runs were performed with time steps of
0.02, 0.04, 0.08, and 0.16 a.u.-1 and subsequent weighted quadratic extrapolation
to zero time step. The simulation ensemble included ~200K walkers for 9-22,
12-18, and 15-16 partitioning of the cluster into QMC and MM components,
respectively.

Results and Discussion

The first VDE of a singlet dianion (H2O)312- is 0.16 eV at the B3LYP/6-
31++G** level of theory and -0.24 eV at the MP2/6-31++G** level of theory
(39). Results of FNDMC/MM calculations are summarized in Table 1. The
largest QMC (with water) component of the cluster is vertically unbound with a
VDE comparable to MP2 value. The VDEs with the smallest QMC (with water)
component considerably underestimate the strength of the interaction in view of
the other results.
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Table 1. First VDE of (H2O)312- cluster from FNDMC/MM calculations for
selected partitioning into QMC and MM components

Size of QMC component Size of MM component VDEQMC/MM
(eV)

9 22 -2.42±0.08

12 19 -0.52±0.09

15 16 -0.17±0.09

The main conclusion is that FNDMC/MM calculations demonstrate high
sensitivity to the number of water molecules present in the component of the
cluster that is treated at FNDMC level. First possible explanation of the observed
tendency is that the present methodology does not account for the effect of
the MM component on the nodes of trial wave function describing the QMC
component. The effect of the MM component is exclusively an energy shift due to
the field of external charges. This aspect can be investigated further by preparing
determinants in the presence of the solvation shell molecules represented, for
example, by point charges or effective fragment potentials (EFP). FNDMC/MM
runs with such determinants encountered heavy instabilities associated with the
locality approximation of ECPs. Alternatively, the highest occupied molecular
orbital of the dianion can be optimized in the course of VMC/MM calculations.
A second possible explanation is inadequacy of the current approach to cluster
partitioning into the central QMC component and MM solvation shell. Mulliken
charges are crude and can yield inadequate results especially in calculations
with basis sets with diffuse functions. The source of such inadequacy might be
intrinsic relevance of all molecules of a cluster to the interaction with highly
delocalized excess electrons, especially for small clusters. This matter can
be clarified if FNDMC/MM calculations are performed for increasingly large
QMC components in the limit of FNDMC treatment of the entire cluster. The
considerations outlined are perceived as directions for future research that aims to
clarify and improve the methodology of QMC/MM calculations.
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Chapter 17

Quantum Monte Carlo and Zdenek Herman’s
Enchanted Psiland

James B. Anderson*

Department of Chemistry, Pennsylvania State University,
University Park, Pennsylvania 16802

* E-mail: jba@psu.edu

“There are some enterprises

in which a careful disorderliness

is the true method.”

Herman Melville in Moby Dick, Chapter 82 (1851)

This chapter gives an outline of the advances in quantum
chemistry provided by Quantum Monte Carlo methods since
the 1970s. The account is based on a drawing made in 1976
by Zdenek Herman entitled The Enchanted Psiland which
illustrates the principal methods, the chemical systems of
interest, and the challenges at that time. Many of these
challenges have been fully met by QMC, others have been
partially met, others remain open, and still more have been
newly revealed.

© 2012 American Chemical Society
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Introduction

In 1976, at the time when quantum Monte Carlo methods were first being
developed for applications to the problems of quantum chemistry, a number of
quantum chemists met for a Faraday Society Discussion of the Chemical Society
on the topic of potential energy surfaces. One of the participants was Zdenek
Herman of the Heyrovsky Institute of Physical Chemistry at Prague who, inspired
by a talk given by Dudley Herschbach, prepared a wonderful drawing (1) depicting
the status of quantum chemistry and carrying the title “The Enchanted Psiland.”
His drawing is reproduced here as Figure 1. In the lower right corner one can see
Professor Herman’s signature and a self-portrait.

The drawing shows a sampling of systems facing quantum chemists in 1976
along with the theoretical methods available at that time for attacking them. What
is missing from the drawing is QuantumMonte Carlo which was then in its infancy
(as were several other methods now available). We use this drawing as the base
for discussion of the successes of QMC in treating the systems indicated and the
many others which are now treatable by QMC methods (2).

The Enchanted Psiland

The drawing shows theoretical methods in the range all the way from semi-
empirical to SCF to CI to ab initio and pseudopotentials as well as molecules and
molecular ions from H3+ to (HF)2. These are listed in Table 1. Many of them
are numbered in the drawing. Near the center is simplest of the species shown,
the ion H3+ represented by a small chapel. The largest structure is the H3 Shrine,
representing the intermediate in the reaction H + H2 → H2 + H. To its right is the
FH2 Palace, representing the intermediate in the reaction F + H2→HF + H. Other
species involving H and F and Li atoms have smaller structures or construction
sites. Varied other types of species are also indicated: van derWaals molecules, the
electron gas, stiff and floppy molecules, and solvated molecules. Anyone working
in the QMC area will recognize the climber scaling Mount Pauli as attacking the
node problem.
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Figure 1. The Enchanted Psiland, by Zdenek Herman of the Heyrovsky Institute (Prague,1976). See reference (1).
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Table 1. Items in Figure 1

1. H3 Shrine also H3+ H4 H6 HeH2+

2. FH2 Palace FH2 HF2 (HF)2

3. HF2 Mansion LiH LiHF HLi2

4. Ab Initio Boulevard HNH

5. SC Field

6. CI Monument CNDO MINDO INDO

7. DIM Alley

8. BEBO Lane

9. Pseudopotential Road

10. Semiempirical Promenade

11. Electron Gas Road

12. Repulsion Range

13. Mount Pauli

14. Stiff Molecule Parking Lot

15. Floppy Playground

16. van der Waals Beach

17. Solvation Sea

Small Molecules

The first variational QMC calculations for molecular systems were carried out
by Conroy (3) almost a decade before 1976 for several small hydrogenic systems.
These included the species H3+ and HeH2+ shown in Herman’s drawing. For these
Conroy obtained energies more accurate than those of any earlier calculations.
Our own diffusion QMC calculations (4) for H3+ in 1975 gave still better values,
with –1.344 ± 0.013 hartrees for the triangular equilibrium structure. By 1992 the
QMC value for that configuration had been improved to –1.343 835 ± 0.000 001
hartrees in ‘exact’ cancellation QMC calculations (5). This was the first quantum
calculation of any type to reach an uncertainty of onemicrohartree for a polyatomic
system. Nearly twenty years later analytic variational calculations Pavanello and
Adamowicz (6) using spherical Gaussian functions have obtained the lowest yet
reported upper bound of –1.343 835 625 02 hartrees. (Improvement on that value
might be obtained with QMC correction calculations).

The saddle point for that simplest of neutral reactions, H + H2 → H2 + H, is
the collinear configuration H–H–H represented by the H3 Shrine. In 1976 the best
calculations of the barrier height to reaction were analytic variational calculations
by Liu (7) with an upper bound of 10.28 kcal/mol and an estimate of 9.5 kcal/
mol for the true value. Similar calculations by Liu (8) in 1984 gave an upper
bound of 9.86 ± 0.12 kcal/mol and an estimate of 9.53 to 9.65 kcal/mol. Fixed-
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node diffusion QMC calculations in our laboratory (9) gave an upper bound of
10.20 ± 0.20 kcal/mol (variational due to node location error). In the same year a
transient released node calculation by Ceperley and Alder gave a barrier height of
9.65 ± 0.06 kcal/mol. A year later a fixed-node diffusion calculation by Barnett,
Reynolds, and Lester (10) gave an upper bound of 9.70 ± 0.13 kcal/mol. After a
hiatus of several years Diedrich and Anderson (11) reported an exact cancellation
value of 9.61 ± 0.01 kcal/mol. If we accept this last value as the true value, then
every single result listed here is correct (that is, below upper bounds or within error
bars). Recent calculations by Mielke et al. (12) using multireference CI methods
gave an upper bound of 9.661 kcal/mole and an estimated value of 9.608 ± 0.010
kcal/mole, and recent ‘exact’ cancellation calculations by Riley and Anderson (13)
gave a value of 9.608 ± 0.001 kcal/mol.

“The reaction F + H2 → HF + H is of special theoretical interest because it
is one of the simplest examples of an exothermic chemical reaction” (14). This
sentence has echoed through the literature of quantum chemistry and chemical
kinetics ever since 1971 (15). The barrier to reaction has had its ups and downs.
These have been described by Schaefer (16) in 1985 as “the ecstasy and the agony”.
The earliest QMC calculations were fixed-node calculations in 1987 (17) giving
total energies 60 kcal/mol below the lowest analytic calculations at the time and
only about 9 kcal/mol above exact values. The collinear barrier height found
was 4.5 ± 0.6 kcal/mole, a value 3 to 4 kcal/mol too high to be compatible with
crossed-beam scattering experiments (surely due to node-location error). There
was a hint of a lower barrier for a bent F–H–H configuration. The next QMC
calculation, reported by Lu (18) in 2005, specified the nodes with a multireference
trial function of floating spherical Gaussian orbitals and obtained a barrier height
of 1.09 ± 0.16 kcal/mole for a slightly bent configuration. Multi-reference coupled
cluster calculations at about the same time by Kállay et al. (19) gave nearly
identical results. These modern results are quite different from those leading to
the “agony” of the 1980s.

The molecule LiH has served as a test case for quantum chemistry since
the 1930s and it has continued to serve as a test case right up to the present
time. About 1976 one of the lowest energies for the molecule at its equilibrium
nuclear separation was that of Hylleraas-CI calculations by Clary and Handy
(20) at –8.0630 hartrees. The first QMC calculation was a fixed-node diffusion
QMC calculation in 1982 by Moskowitz, Schmidt, Lee, and Kalos (21) with an
energy of about –8.07 hartrees. A number of fixed-node and released node QMC
calculations from 1984 to 1992 (22–26) gave values of about –8.070 hartrees.
Our own released node calculations in 1995, Chen and Anderson (27), gave an
extrapolated value of –8.07021 ± 0.00005 hartrees, lower than any variational
result up to that date, but found later to be 0.00034 hartrees above the variational
energy of –8.07055 hartrees established by Cencek and Rychlewski (28) in 2000.
Apparently, the extrapolation required in released node calculations is dangerous.

Wells (29) investigated difference methods for the dipole moment for LiH
and Carlson, Moskowitz, and Schmidt (30) investigated model Hamiltonians for
LiH. The most recent calculations for LiH are the reptation QMC calculations by
Ospadov, Oblinsky, and Rothstein (31) to obtain static polarizabilities and hyper-
polarizabilities for the ground state.
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Other small species named in the drawing are H4 and H6. In the case of
the H4 square, a possible intermediate in the reaction H2 + D2 → 2 HD, shock
tube experiments had suggested a barrier height of about 40 kcal/mol, but analytic
variational calculations about 1976 indicated a height of more than 115 kcal/mol.
A fixed-node QMC calculation (32) in 1979 indicated a barrier height of 150-180
kcal/mol. The experiments were subsequently reinterpreted.

In the case of the hydrogen-bonded dimer (HF)2 Sun and Watts (33) and
Quark and Suhm (34) reported in 1991-92 diffusion QMC calculations for the
nuclear motions to make predictions and assignments of the spectral bands of
(HF)2 observed in earlier experiments. In both sets of calculations several different
potential energy surfaces and treatments of nodes were employed to reproduce the
measured spectra. The calculations revealed anharmonicity and strong mixing
among the varied stretching and bending vibrational modes.

The Electron Gas

The development of earlier theoretical treatments of the electron gas was
recently summarized by Mahan (35). By 1976 the treatments by Singwi and his
coworkers (36, 37) had provided predictions of the correlation energy and other
properties. The first QMC calculations for the electron gas were those of Ceperley
and Alder (38) in 1980, described in a paper which introduced the released node
method for treating nodes in QMC. The calculations were carried out for 38 to 246
electrons to determine the fermion ground state over a wide range of densities. The
results were in general agreement with earlier predictions and they have provided
a solid basis for density functional theory.

More recent calculations by Ortiz and Ballone (39) provided further details on
correlation energy and related properties. Kenny et al. (40) used both variational
and fixed-node diffusion QMC to explore relativistic effects for the electron gas.
They showed the importance of electron correlation, even for relativistic effects.

Pseudopotential Road

Three papers with different authors in 1987-88 were first to report the use of
pseudopotentials, effective potentials, and model potentials in QMC calculations.
The studies were carried out by Hammond, Reynolds, and Lester (41), by Hurley
and Christiansen (42), and by Yoshida and Iguchi (43) to predict ionization
potentials and electron affinities for ion-atom pairs such as K/K-- and Ca/Ca+.
The computation requirements were several orders of magnitude less than those
of comparable all-electron calculations. Statistical uncertainties were typically
0.01 to 0.03 eV and differences from experimental values were generally within
the uncertainties.

A number of QMC studies with pseudopotentials were reported very soon
after the first three. Many of these are listed and reported elsewhere (2). The
carbon cluster C20 was investigated using pseudopotentials in 1995 by Grossman,
Mitas, and Raghavachari (44) to determine the relative values of the energies of its
ring, bowl, and cage configurations. The bowl configuration was found the lowest
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in energy with the ring and cage energies 1.1 and 2.2 eV higher. Five years later,
in 2000, Sokolova, Luchow, and Anderson (45) reported all-electron calculations
with nearly identical results (i.e., the ring and cage energies 1.1 and 2.1 eV higher
than the bowl). The close agreement gives confidence in both sets of calculations.
Alternative methods of all types, some limited to small basis sets by the large
number of electrons, gave widely varying results.

Stiff Molecule Parking Lot and Floppy Molecule Playground

Stiff molecules and floppy molecules and perhaps any and all polyatomic
molecules can present difficulties in quantum chemistry. The typical problem
is that of predicting rotation-vibration energy levels, especially for coupled
anharmonic modes. QMC has provided a completely new way of attacking the
problems. Many advances have been made, but only a few will be mentioned
here.

An early QMC study in 1985 by Coker, Miller, and Watts (46) predicted
infrared predissociation spectra of water clusters far better than earlier normal
mode analyses. Early studies for the HF dimer were noted above. Buch (47)
treated the loosely-bound ground states of ortho-H2-H2O and para-H2-H2O using
rigid bodies for the molecules. Larger systems have also been the subject of
such QMC studies. A string of 100 atoms in a polyethylene chain was treated
by Tuzun, Noid, and Sumpter (48), and strings of more than 1000 atoms in protein
chains were studied by Clary (49) in 2001. An “adiabatic” extension to diffusion
QMC was devised by Lee, Herbert, and McCoy (50) in 1999 for treating excited
states of several loosely bound van der Waals complexes. In 2007 Meredith,
Crittenden, and Thompson (51) reported a means of combining potential energy
surfaces for loosely bound complexes and its successful applications to several
large hydrogen-bonded molecules.

van der Waals Beach

The earliest use of Metropolis sampling in QMC was in 1965 by McMillan
(52) for calculations of liquid helium using pairwise-additive interaction
potentials. This was the first of many QMC calculations for the study of van
der Waals attractions and systems. Diffusion and Green’s function calculations
for helium droplets followed McMillan’s calculations within a few years. These
include, for example, calculations by Kalos et al. (53) in 1981, Pandharipande
et al. (54) in 1983, Coker and Watts (55) in 1987, and Lewerenz (56) in 1997.
Calculations for systems other than He dimers and clusters have been reported by
Rick et al. (57) in 1991, Broude et al. (58) in 1999, and Lee and McCoy (59) in
2001.

Electronic structure calculations using QMC for van der Waals interactions
began with a variational calculation for the helium dimer He-He by Coldwell
and Lowther (60) in 1978 and continue for that dimer with fixed-node diffusion
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calculations and several “exact” cancellation calculations to 2004 with a latest well
depth (61) of 10.998 ± 0.005 degrees K. The neon dimer Ne-Ne presents a more
difficult problem. The most successful QMC calculations to date for that system
are those by Toulouse and Umrigar (62) reported in 2008.

(Keep Off) Solvation Sea

Until recently theoretical chemists, except for Onsager (63), kept off
the Solvation Sea. Onsager’s ‘reaction field’ of 1938, which incorporated a
continuum with a uniform dielectric constant, was available in 1976 and with
improvements remains useful at present. QMC methods for treating solvation
have used explicit solvent molecules surrounding a solvent molecule. First was
the work of Dobrosavljevic, Henebry, and Stratt (64) in 1989 with a hydrogen
atom in a hard sphere fluid. Later Brown, Gregory, and Clary (65) predicted
vibrational frequency shifts of N2+ in helium clusters, while Cazzato et al. (66)
calculated the infrared spectrum of CO in helium, and Moroni, Blinov, and Roy
(67) considered NNO, also in helium.

Once the possibility of “on the fly” classical trajectory calculations in
QMC was demonstrated in 2005 by Grossman and Mitas (68) QMC treatments
of solvated molecules began to appear. In 2007 Maezano et al. (69) adapted
fragment molecular orbital methods to variational QMC for treating clusters
containing glycine molecules. In 2010 Cho and Lester (70) reported a QMC
hybrid quantum mechanics/molecular mechanics approach with explicit solvent
molecules that was successfully applied to hydrogen bonded systems. It appears
there soon may be smooth sailing on the Solvation Sea.

Discussion

The quantum chemistry methods available in 1976 and listed in Table 1
include SC Field, CI Monument, DIM Alley, BEBO Lane, CINDO, MINDO,
Pseudo Potential and Semiempirical Promenade. Of these, DIM, BEBO, CINDO,
MINDO, and INDO are almost forgotten at present. New methods which have
evolved since the 1960s and 1970s are CC, MP2, MP3, MP4, MCSCF, DFT, FCI,
G2, G3, G4, a number of others and, of course, QMC.

A “tree” drawing from 1999 (71) also shows the growth and branching of
methods from about 1976 up to 1999. In Figure 2, a similar “tree” shows the
growth and branching of QMC from 1976 to the present. In another 35 years we
should expect a few dead limbs, a lot more growth and branching, and perhaps
even flowers and seeds.
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Figure 2. A QMC tree of methods along with package programs.
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structure, 47

zero temperature
fermion-boson gaps, 44
release node improvement, 45
released node quantum Monte Carlo,
42

Finite feedback delay, 23
Finite-size effect, 113
First VDE of (H2O)312- cluster, 204t
Floppy molecules, 215
CH5+ applications, 150
H3O+ applications, 150
overview, 145
rotationally excited states, 148

FMO method. See fragment molecular
orbital (FMO) method

Fourth-order propagator, variational path
integral, 177

Fragment molecular orbital (FMO) method,
189

G

Glycine pentamer structure, 194, 194f
Ground state chromium dimer
multi-determinant calculations, 94
overview, 91
quantum Monte Carlo methods, 93
single determinant calculations, 94

H

Hartree-Fock symmetry breaking, 55
Hartree-Fock symmetry dilemma
computational details, 59
overview, 53
symmetry breaking, 55

HCN and [HCN;e+] systems, total energy
and positron affinity, 171t

HCN molecule, timestep dependence of
positron affinity (PA), 170f

HF energy differences of H4n+2 rings, 57t
High-energy electron scattering
calculations, 132
overview, 131

Highest occupied molecular orbital, 170f
H2 molecules comparisons, 8
H3O+, inversion, 152f
H3O+ applications, 150
(H2O)312- cluster, 9-22, 12-19, and 15-16
partitioning of, 202f

Hybrid Monte Carlo, 32, 36, 179
Hybrid path integral Monte Carlo method,
36

Hydrogen cyanide molecule, 169

I

Inelastic scattering cross sections, 140t
Interacting Hamiltonian function, 85
Interpolated potential energy surface
H2O, 33
H3O+, 35

Inversion of H3O+ and inversion of axis
system, relationship, 152f

Isosurfaces (60%)
single electrons of LiH, 69f
spin up single electron densities, 72f, 74f
spin up valence densities ethane, 70f

J

J = 0 and 1 energies for H3O+ and CH5+,
153t

K

KH and [KH;e+] systems, total energy and
positron affinity, 168t

KH molecule, timestep dependence of
positron affinity (PA), 168f
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L

LiH, NaH, and KH, positron affinities and
dipole moments, 169f

LiH and [LiH;e+] systems, total energy,
inter-nuclear separations, and positron
affinity, 181f

LiH molecule, timestep dependence of
positron affinity (PA), 165f

M

Many-body nodal hypersurface, 77
Molecular crystal polymorphism
DFT predictions, 106
DFT structure optimization, 110
DMC predictions, 106
finite-size effect, 113
methodology, 104
overview, 101
zero-point effect, 113

Molecular dynamics
hybrid Monte Carlo, 179
overview, 177
variational path integral, 178

Møller-Plesset perturbation theory, 190
Multi-determinant calculations, 94
Munkres algorithm, 69f

N

NaH molecule, timestep dependence of
positron affinity (PA), 167f

Neon dimer, 9
Neon vs. neon, 7
Noninteracting Hamiltonian function, 85
Noninteracting wave function, 85
Non-relativistic Hamiltonian, positron
binding, 159

O

Optimal reference positions, 71
Optimized lattice constants
α polymorph, 112f
β polymorph, 113f
and unit cell volumes, 111t

Optimized structure of water trimer, 191f
Optimized unit cell volumes, 110f

P

Pair correlation function g(r), 128f
Parallel diffusion Monte Carlo
delayed feedback DMC, 18
finite feedback delay, 23
future, 13
model system, 19
review, 15
simulations, practical recommendations,
25

zero feedback delay, 21
9-22, 12-19, and 15-16 partitioning of
(H2O)312- cluster, 202f

Path integral molecular dynamics
FMO method, 189
glycine pentamer, 194
Møller-Plesset perturbation theory, 190
overview, 188
water trimer, 191, 195

Path integral Monte Carlo method, 31, 36
Permutation space structure, fermion
treatment, 47

Population control bias
vs. combined population control
parameter and update period, 22f

vs. effective control parameter for
standard and time delayed DMC, 24f

Population volatility vs. combined
population control parameter and update
period, 21f

Positron binding, polar molecules
alkali-metal hydrides
lithium hydride, 163
potassium hydride, 167
sodium hydride, 165

computational details, 162
DMC, 162
hydrogen cyanide molecule, 169
non-relativistic Hamiltonian, 159
overview, 157
Slater-Jastrow trial wave functions
Jastrow factor, 161
multi-component molecular orbital
method, 160

orbital cusp corrections, 161
VMC, 162

Probability distributions
interfragment interaction energy, 193f
O-O distance, 192f, 196f
O-O-O angles, 192f

Pseudopotentials, 214
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Q

QMC tree of methods, 217f

R

Rashba interaction, 124
Release node improvement, fermion
treatment, 45

Released node quantum Monte Carlo,
fermion treatment, 42

Rotationally excited states, floppy
molecules, 148

S

SCF, VMC, and DMC binding curves, 96f
Self-consistent centers, electron charge, 71
Single determinant calculations, 94
Single electron densities
electron assignments, 67
optimal reference positions, 71
overview, 65

Single solvated electron
methodology, 203
overview, 201

Slater-Jastrow trial wave functions,
positron binding
Jastrow factor, 161
multi-component molecular orbital
method, 160

orbital cusp corrections, 161
Small molecules, 212
Solvation, 216
SO splittings
for C atom, 123f
for Pb, 124f

Spin-orbit interaction
DMC, Hamiltonian, 124
overview, 119
Rashba interaction, 124
VMC, 119
C and Pb atoms, 122

Stability vs. feedback delay and population
control parameter, 24f

Stiff molecules, 215
Structural properties and interaction
energies, N-H…O and O-H…O
hydrogen bonds, 195t

Structure of one-particle density matrix
HF symmetry-adapted (SA) solution, 56f

symmetry-broken (SB-AC and SB-BC)
solution, 56f

T

Timestep dependence of positron affinity
(PA)
HCN molecule, 170f
KH molecule, 168f
LiH molecule, 165f
NaH molecule, 167f

Total energy and energy differences, per H2
cell in mhartree, 61t

Total energy and positron affinity, HCN
and [HCN;e+] systems, 171t

Total energy per 4He atom, 181f

U

Uncorrelated and correlated water
wavefunction, maxima, 71f

Uncorrelated ethene wavefunction,
maxima, 73f

V

van der Waals attractions, 215
Variational Monte Carlo (VMC), 57, 120
total energies of H4n+2 rings, 60f

Variational path integral, 178
VMC. See variational Monte Carlo (VMC)

W

Water trimer, 191, 195
O-H bond lengths (ROH) and O-O
distances ( ROO), 196t

Optimized structure, 191f
PIMD simulation, 192f
probability distribution of O-O distance
(ROO), 196f

probability distribution of O-O distance
(ROO) and O-O-O (qOOO), 192f

Z

Zero-point effect, 113
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